Sparse Output Coding for Large-Scale Visual Recognition

被引:13
|
作者
Zhao, Bin [1 ]
Xing, Eric P. [1 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
关键词
D O I
10.1109/CVPR.2013.430
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many vision tasks require a multi-class classifier to discriminate multiple categories, on the order of hundreds or thousands. In this paper, we propose sparse output coding, a principled way for large-scale multi-class classification, by turning high-cardinality multi-class categorization into a bit-by-bit decoding problem. Specifically, sparse output coding is composed of two steps: efficient coding matrix learning with scalability to thousands of classes, and probabilistic decoding. Empirical results on object recognition and scene classification demonstrate the effectiveness of our proposed approach.
引用
收藏
页码:3350 / 3357
页数:8
相关论文
共 50 条
  • [1] Decoupling sparse coding of SIFT descriptors for large-scale visual recognition
    Ji, Zhengping
    Theiler, James
    Chartrand, Rick
    Kenyon, Garrett
    Brumby, Steven P.
    [J]. INDEPENDENT COMPONENT ANALYSES, COMPRESSIVE SAMPLING, WAVELETS, NEURAL NET, BIOSYSTEMS, AND NANOENGINEERING XI, 2013, 8750
  • [2] Decoupling Sparse Coding with Fusion of Fisher Vectors and Scalable SVMs for Large-scale Visual Recognition
    Ji, Zhengping
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2013, : 450 - 457
  • [3] Sparse Output Coding for Scalable Visual Recognition
    Bin Zhao
    Eric P. Xing
    [J]. International Journal of Computer Vision, 2016, 119 : 60 - 75
  • [4] Sparse Output Coding for Scalable Visual Recognition
    Zhao, Bin
    Xing, Eric P.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 119 (01) : 60 - 75
  • [5] Large-Scale Visual Speech Recognition
    Shillingford, Brendan
    Assael, Yannis
    Hoffman, Matthew W.
    Paine, Thomas
    Hughes, Cian
    Prabhu, Utsav
    Liao, Hank
    Sak, Hasim
    Rao, Kanishka
    Bennett, Lorrayne
    Mulville, Marie
    Denil, Misha
    Coppin, Ben
    Laurie, Ben
    Senior, Andrew
    de Freitas, Nando
    [J]. INTERSPEECH 2019, 2019, : 4135 - 4139
  • [6] Large-Scale Visual Font Recognition
    Chen, Guang
    Yang, Jianchao
    Jin, Hailin
    Brandt, Jonathan
    Shechtman, Eli
    Agarwala, Aseem
    Han, Tony X.
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 3598 - 3605
  • [7] A Decomposition Method for Large-Scale Sparse Coding in Representation Learning
    Li, Yifeng
    Caron, Richard J.
    Ngom, Alioune
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 3732 - 3738
  • [8] Asymmetric sparse kernel approximations for large-scale visual search
    Davis, Damek
    Balzer, Jonathan
    Soatto, Stefano
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 2115 - 2122
  • [9] Hierarchical recognition of sparse patterns in large-scale simultaneous inference
    Sun, Wenguang
    Wei, Zhi
    [J]. BIOMETRIKA, 2015, 102 (02) : 267 - 280
  • [10] Multiple Event Detection and Recognition for Large-Scale Power Systems Through Cluster-Based Sparse Coding
    Song, Yang
    Wang, Wei
    Zhang, Zhifei
    Qi, Hairong
    Liu, Yilu
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (06) : 4199 - 4210