Skin lesion diagnosis using fluorescence images

被引:0
|
作者
Odeh, Suhail M. [1 ]
Ros, Eduardo
Rojas, Ignacio
Palomares, Jose M.
机构
[1] Univ Granada, Dept Comp Architecture & Technol, E-18071 Granada, Spain
[2] Univ Cordoba, Dept Electrotech & Elect, E-14071 Cordoba, Spain
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a computer aided diagnosis system for skin lesions. Diverse parameters or features extracted from fluorescence images are evaluated for cancer diagnosis. The selection of parameters has a significant effect on the cost and accuracy of an automated classifier. The genetic algorithm (GA) performs parameters selection using the classifier of the K-nearest neighbours (KNN). We evaluate the classification performance of each subset of parameters selected by the genetic algorithm. This classification approach is modular and enables easy inclusion and exclusion of parameters. This facilitates the evaluation of their significance related to the skin cancer diagnosis. We have implemented this parameter evaluation scheme adopting a strategy that automatically optimizes the K-nearest neighbours classifier and indicates which features are more relevant for the diagnosis problem.
引用
收藏
页码:648 / 659
页数:12
相关论文
共 50 条
  • [1] EVALUATING FLUORESCENCE ILLUMINATION TECHNIQUES FOR SKIN LESION DIAGNOSIS
    Odeh, Suhail M.
    de Toro, Francisco
    Rojas, Ignacio
    Jose Saez-Lara, Maria
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2012, 26 (07) : 696 - 713
  • [2] Deep Learning-Based Skin Lesion Diagnosis Model Using Dermoscopic Images
    Reshma, G.
    Al-Atroshi, Chiai
    Nassa, Vinay Kumar
    Geetha, B. T.
    Sunitha, Gurram
    Galety, Mohammad Gouse
    Neelakandan, S.
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (01): : 621 - 634
  • [3] Inductive Learning of Skin Lesion Images for Early Diagnosis of Melanoma
    Surowka, Grzegorz
    [J]. 2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 2623 - 2627
  • [4] Pattern Recognition in Macroscopic and Dermoscopic Images for Skin Lesion Diagnosis
    Oliveira, Roberta B.
    Pereira, Aledir S.
    Tavares, Joao Manuel R. S.
    [J]. VIPIMAGE 2017, 2018, 27 : 504 - 514
  • [5] Skin Lesion Diagnosis Using Deep Learning
    Muresan, Horea-Bogdan
    [J]. 2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019), 2019, : 499 - 506
  • [6] Explainable skin lesion diagnosis using taxonomies
    Barata, Catarina
    Celebi, M. Emre
    Marques, Jorge S.
    [J]. PATTERN RECOGNITION, 2021, 110
  • [7] Detection of Skin Cancer Based on Skin Lesion Images Using Deep Learning
    Gouda, Walaa
    Sama, Najm Us
    Al-Waakid, Ghada
    Humayun, Mamoona
    Jhanjhi, Noor Zaman
    [J]. HEALTHCARE, 2022, 10 (07)
  • [8] Segmentation of skin lesion images using discrete wavelet transform
    Ramya, J.
    Vijaylakshmi, H. C.
    Saifuddin, Huda Mirza
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 69 (69)
  • [9] Skin Lesion Segmentation in Clinical Images Using Deep Learning
    Jafari, M. H.
    Karimi, N.
    Nasr-Esfahani, E.
    Samavi, S.
    Soroushmehr, S. M. R.
    Ward, K.
    Najarian, K.
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 337 - 342
  • [10] Skin lesion segmentation in dermoscopic images using CNN architecture
    Dayananda, Chaitra
    You, Wonsang
    Choi, Jae Young
    Lee, Bumshik
    [J]. International Conference on ICT Convergence, 2021, 2021-October : 572 - 575