BIOINFORMATICS-BASED IDENTIFICATION OF URINARY KIDNEY-SPECIFIC MRNAS AS POTENTIAL BIOMARKERS OF DIABETIC KIDNEY DISEASE

被引:0
|
作者
Zhou, Le-Ting [1 ]
Lv, Lin-Li [1 ]
Yin, Qing [1 ]
Tang, Tao-Tao [1 ]
Wen, Yi [1 ]
Liu, Bi-Cheng [1 ]
机构
[1] Southeast Univ, Inst Nephrol, Nanjing, Jiangsu, Peoples R China
关键词
D O I
暂无
中图分类号
R3 [基础医学]; R4 [临床医学];
学科分类号
1001 ; 1002 ; 100602 ;
摘要
SO017
引用
收藏
页码:9 / +
页数:2
相关论文
共 50 条
  • [1] URINARY KIDNEY-SPECIFIC MRNAS AS POTENTIAL BIOMARKERS OF GLOMERULONEPHRITIS: BIOINFORMATICS-BASED IDENTIFICATION AND PCR ARRAY FABRICATION
    Qiu, Shen
    Zhou, Le-Ting
    Lv, Lin-Li
    Ma, Kun-Ling
    Tang, Ri-Ning
    Liu, Bi-Cheng
    [J]. NEPHROLOGY DIALYSIS TRANSPLANTATION, 2018, 33
  • [2] Bioinformatics-based discovery of the urinary BBOX1 mRNA as a potential biomarker of diabetic kidney disease
    Le-Ting Zhou
    Lin-Li Lv
    Shen Qiu
    Qing Yin
    Zuo-Lin Li
    Tao-Tao Tang
    Li-Hua Ni
    Ye Feng
    Bin Wang
    Kun-Ling Ma
    Bi-Cheng Liu
    [J]. Journal of Translational Medicine, 17
  • [3] Bioinformatics-based discovery of the urinary BBOX1 mRNA as a potential biomarker of diabetic kidney disease
    Zhou, Le-Ting
    Lv, Lin-Li
    Qiu, Shen
    Yin, Qing
    Li, Zuo-Lin
    Tang, Tao-Tao
    Ni, Li-Hua
    Feng, Ye
    Wang, Bin
    Ma, Kun-Ling
    Liu, Bi-Cheng
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2019, 17 (1)
  • [4] Integrated Bioinformatics-Based Identification of Potential Diagnostic Biomarkers Associated with Diabetic Foot Ulcer Development
    Qian, Long
    Xia, Zhipeng
    Zhang, Ming
    Han, Qiong
    Hu, Die
    Qi, Sha
    Xing, Danmou
    Chen, Yan
    Zhao, Xin
    [J]. JOURNAL OF DIABETES RESEARCH, 2021, 2021
  • [5] Urinary peptidomics and bioinformatics for the detection of diabetic kidney disease
    Brondani, Leticia de Almeida
    Soares, Ariana Aguiar
    Recamonde-Mendoza, Mariana
    Dall'Agnol, Angelica
    Camargo, Joiza Lins
    Monteiro, Karina Mariante
    Silveiro, Sandra Pinho
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] Urinary peptidomics and bioinformatics for the detection of diabetic kidney disease
    Letícia de Almeida Brondani
    Ariana Aguiar Soares
    Mariana Recamonde-Mendoza
    Angélica Dall’Agnol
    Joíza Lins Camargo
    Karina Mariante Monteiro
    Sandra Pinho Silveiro
    [J]. Scientific Reports, 10
  • [7] New urinary biomarkers for diabetic kidney disease
    Wang C.
    Li C.
    Gong W.
    Lou T.
    [J]. Biomarker Research, 1 (1)
  • [8] Identification of biomarkers and potential therapeutic targets of kidney stone disease using bioinformatics
    Yuchen Gao
    Ding Liu
    Hongmin Zhou
    Yunze Dong
    Xiao Xu
    Xiangcheng Zhan
    Nueraihemaiti Yimingniyizi
    Xudong Yao
    Tiancheng Xie
    Yunfei Xu
    [J]. World Journal of Urology, 42
  • [9] Identification of biomarkers and potential therapeutic targets of kidney stone disease using bioinformatics
    Jiang, Lai
    Zhou, Xuancheng
    Yang, Guanhu
    Chi, Hao
    [J]. WORLD JOURNAL OF UROLOGY, 2024, 42 (01)
  • [10] Insights into Diabetic Kidney Disease Using Urinary Proteomics and Bioinformatics
    Van, Julie A. D.
    Scholey, James W.
    Konvalinka, Ana
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2017, 28 (04): : 1050 - 1061