Lipschitz estimates for commutator of fractional integral operators on non-homogeneous metric measure spaces

被引:3
|
作者
Wang, Ding-huai [1 ]
Zhou, Jiang [2 ]
Ma, Bo-lin [3 ]
机构
[1] Anhui Normal Univ, Sch Math & Stat, Wuhu 241000, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[3] Jiaxing Univ, Coll Sci & Informat Engn, Jiaxing 314001, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-homogeneous space; Fractional integral; Lipschitz function; Commutator; Endpoint estimate; CALDERON-ZYGMUND OPERATORS; BOUNDEDNESS; BMO; H-1;
D O I
10.1007/s11766-020-3319-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors establish the (L-p(mu), L-q(mu))-type estimate for fractional commutator generated by fractional integral operators T-alpha with Lipschitz functions (b is an element of Lip(beta) (mu)), where 1 <p < 1/(alpha + beta) and 1/q = 1/p- (alpha + beta), and obtain their weak (L-1(mu), L1/(1-alpha-beta) (mu))-type. Moreover, the authors also consider the boundedness in the case that 1 /(alpha+beta) < p < 1/alpha, 1/alpha <= p <= infinity and the endpoint cases, namely, p = 1/(alpha + beta).
引用
收藏
页码:253 / 264
页数:12
相关论文
共 50 条