Multiperiodicity and Attractivity Analysis for a Class of High-order Cohen-Grossberg Neural Networks

被引:0
|
作者
Sheng, Li [1 ]
Gao, Ming [2 ]
机构
[1] East China Univ Petr, Coll Informat & Control Engn, Qingdao 266580, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Informat & Elect Engn, Qingdao 266590, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Multiperiodicity; Multistability; High-order Cohen-Grossberg neural networks; Exponentially attractive; MULTISTABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the multiperiodicity of a class of high-order Cohen-Grossberg neural networks (HOCGNNs) with special activation functions is discussed by using analysis approach and decomposition of state space. The activation functions of this class of neural networks consist of nondecreasing functions with saturation, standard activation functions of cellular neural networks, etc. It is shown that the n-neuron HOCGNNs can have 2(n) locally exponentially attractive periodic orbits located in saturation regions. In addition, a condition is derived for ascertaining the periodic orbit to be locally exponentially attractive and to be located in any designated region. Finally, an example is given to show the effectiveness of the obtained results.
引用
收藏
页码:1489 / 1494
页数:6
相关论文
共 50 条
  • [1] Multiperiodicity analysis of a class of high-order Cohen-Grossberg neural networks
    School of Communication and Control Engineering, Jiangnan University, Wuxi 214122, China
    Kongzhi yu Juece Control Decis, 2009, 11 (1688-1692):
  • [2] The stability of high-order cohen-grossberg neural networks
    Lei, Jingsheng
    Yan, Ping
    Lv, Teng
    Journal of Information and Computational Science, 2009, 6 (03): : 1647 - 1652
  • [3] Dynamic analysis of high-order Cohen-Grossberg neural networks with time delay
    Chen, Zhang
    Zhao, Donghua
    Ruan, Jiong
    CHAOS SOLITONS & FRACTALS, 2007, 32 (04) : 1538 - 1546
  • [4] Multistability and multiperiodicity of delayed Cohen-Grossberg neural networks with a general class of activation functions
    Cao, Jinde
    Feng, Gang
    Wang, Yanyan
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (13) : 1734 - 1749
  • [5] Discrete analogue of high-order periodic Cohen-Grossberg neural networks with delay
    Chen, Zhang
    Zhao, Donghua
    Fu, Xilin
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) : 210 - 217
  • [6] Periodic solutions of high-order Cohen-Grossberg neural networks with distributed delays
    Liu, Qiming
    Xu, Rui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (07) : 2887 - 2893
  • [7] Multistability and Multiperiodicity for a General Class of Delayed Cohen-Grossberg Neural Networks with Discontinuous Activation Functions
    Du, Yanke
    Li, Yanlu
    Xu, Rui
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013
  • [8] The Existence of Anti-periodic Solutions for High-Order Cohen-Grossberg Neural Networks
    Li, Zhonhong
    Zhao, Kaihong
    Yang, Chenxi
    ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 1, PROCEEDINGS, 2010, 6063 : 585 - 594
  • [9] Finite-Time Stability Criteria for a Class of High-Order Fractional Cohen-Grossberg Neural Networks with Delay
    Yang, Zhanying
    Zhang, Jie
    Hu, Junhao
    Mei, Jun
    COMPLEXITY, 2020, 2020
  • [10] Novel stalbiliy analysis of high-order Cohen-Grossberg neural networks with time-varying delays
    Ji Yan
    Cui Baotong
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 4, 2007, : 176 - +