Incorporating uncertainty in data driven regression models of fluidized bed gasification: A Bayesian approach

被引:25
|
作者
Pan, Indranil [1 ]
Pandey, Daya Shankar [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, Energy Environm Modelling & Minerals Res Sect E2M, London SW7 2AZ, England
[2] Univ Limerick, Dept Chem & Environm Sci, Carbolea Res Grp, Limerick, Ireland
关键词
Municipal solid waste; Bayesian statistics; Gaussian processes; Gasification; Fluidized bed gasifier; R PACKAGE; OPTIMIZATION; GASIFIER; DESIGN; MSW;
D O I
10.1016/j.fuproc.2015.10.027
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In recent years, different non-linear regression techniques using neural networks and genetic programming have been applied for data-driven modelling of fluidized bed gasification processes. However, none of these methods explicitly take into account the uncertainty of the measurements and predictions. In this paper, a Bayesian approach based on Gaussian processes is used to address this issue. This method is used to predict the syngas yield production and the lower heating value (LHV) for municipal solid waste (MSW) gasification in a fluidized bed gasifier. The model parameters are calculated using the maximum a-posteriori (MAP) estimate and compared with the Markov Chain Monte Carlo (MCMC) method. The simulations demonstrate that the Bayesian methodology is a powerful technique for handling the uncertainties in the model and making probabilistic predictions based on experimental data. The method is generic in nature and can be extended to other types of fuels as well. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:305 / 314
页数:10
相关论文
共 50 条
  • [1] Development of data-driven models for fluidized-bed coal gasification process
    Chavan, P. D.
    Sharma, T.
    Mall, B. K.
    Rajurkar, B. D.
    Tambe, S. S.
    Sharma, B. K.
    Kulkarni, B. D.
    [J]. FUEL, 2012, 93 (01) : 44 - 51
  • [2] A data-driven framework for uncertainty quantification of a fluidized bed
    Kotteda, V. M. Krushnarao
    Kommu, Anitha
    Kumar, Vinod
    [J]. 2019 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2019,
  • [3] Bayesian Nonlocal Operator Regression: A Data-Driven Learning Framework of Nonlocal Models with Uncertainty Quantification
    Fan, Yiming
    D'Elia, Marta
    Yu, Yue
    Najm, Habib N.
    Silling, Stewart
    [J]. JOURNAL OF ENGINEERING MECHANICS, 2023, 149 (08)
  • [4] Hierarchical Bayesian conjoint models incorporating measurement uncertainty
    John C. Liechty
    Duncan K. H. Fong
    Eelko K. R. E. Huizingh
    Arnaud De Bruyn
    [J]. Marketing Letters, 2008, 19 : 141 - 155
  • [5] Hierarchical Bayesian conjoint models incorporating measurement uncertainty
    Liechty, John C.
    Fong, Duncan K. H.
    Huizingh, Eelko K. R. E.
    De Bruyn, Arnaud
    [J]. MARKETING LETTERS, 2008, 19 (02) : 141 - 155
  • [6] Quantifying uncertainty of a reacting multiphase flow in a bench-scale fluidized bed gasifier: A Bayesian approach
    Gel, Aytekin
    Shahnam, Mehrdad
    Subramaniyan, Arun K.
    [J]. POWDER TECHNOLOGY, 2017, 311 : 484 - 495
  • [7] Data-driven Bayesian inference of turbulence model closure coefficients incorporating epistemic uncertainty
    Daigo Maruyama
    Philipp Bekemeyer
    Stefan Görtz
    Simon Coggon
    Sanjiv Sharma
    [J]. Acta Mechanica Sinica, 2021, 37 : 1812 - 1838
  • [8] Data-driven Bayesian inference of turbulence model closure coefficients incorporating epistemic uncertainty
    Maruyama, Daigo
    Bekemeyer, Philipp
    Goertz, Stefan
    Coggon, Simon
    Sharma, Sanjiv
    [J]. ACTA MECHANICA SINICA, 2021, 37 (12) : 1812 - 1838
  • [9] Artificial neural network models for biomass gasification in fluidized bed gasifiers
    Puig-Arnavat, Maria
    Alfredo Hernandez, J.
    Carles Bruno, Joan
    Coronas, Alberto
    [J]. BIOMASS & BIOENERGY, 2013, 49 : 279 - 289
  • [10] An ensemble data-driven approach for incorporating uncertainty in the forecasting of stormwater sewer surcharge
    Schmid, Felix
    Leandro, Jorge
    [J]. URBAN WATER JOURNAL, 2023, 20 (09) : 1140 - 1156