THE EISENSTEIN IDEAL AND JACQUET-LANGLANDS ISOGENY OVER FUNCTION FIELDS

被引:0
|
作者
Papikian, Mihran [1 ]
Wei, Fu-Tsun [2 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Acad Sinica, Inst Math, Taipei 10617, Taiwan
来源
DOCUMENTA MATHEMATICA | 2015年 / 20卷
关键词
Drinfeld modular curves; Cuspidal divisor group; Shimura subgroup; Eisenstein ideal; Jacquet-Langlands isogeny; HECKE OPERATORS; DRINFELD; CURVES; TORSION; UNIFORMIZATION; JACOBIANS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p and q be two distinct prime ideals of F-q[T]. We use the Eisenstein ideal of the Hecke algebra of the Drinfeld modular curve X-0(pq) to compare the rational torsion subgroup of the Jacobian J(0)(pq) with its subgroup generated by the cuspidal divisors, and to produce explicit examples of Jacquet-Langlands isogenies. Our results are stronger than what is currently known about the analogues of these problems over Q.
引用
收藏
页码:551 / 629
页数:79
相关论文
共 50 条