In this work, we study commitment over a class of channels called reverse elastic channels (RECs). In the commitment problem, two mutually distrustful parties, say Alice and Bob, seek to commit on a bit string available to Alice. The parties interact via a commitment protocol comprising two phases, viz., commit phase followed by reveal phase. Alice commits to a string, and transmits it to Bob securely in a manner Bob cannot learn it until Alice chooses to reveal it; at the time of reveal, however, Bob can successfully detect if Alice cheats. It is well known that noisy channels are a promising resource to realize information-theoretically secure commitment; however, oftentimes, channel behaviour may be poorly characterized thereby limiting the commitment throughput and/or degrading the security guarantees. Particularly problematic is a scenario where dishonest parties can actively alter the channel characteristics. RECs are an interesting class of such unreliable channels, where essentially only a dishonest committer Alice can meaningfully alter the channel; RECs have attracted active recent interest. Our principal contribution is the REC commitment capacity characterization for all parameters; this proves a recent related conjecture. Apart from presenting an achievable scheme, a key result in our work is a tight converse which analyses a specific cheating strategy by Alice. The significance of RECs stems from the fact that along with elastic channels (ECs), where only a dishonest receiver Bob can alter the channel, these two channel models represent special cases of the more widely studied unfair noisy channels (UNCs). Interestingly, for a given set of parameters, our result shows that the REC commitment capacity is no larger than that for the ECs. Furthermore, similar to the ECs, RECs offer non-trivial commitment throughput for all meaningful parameters; this is in stark contrast to UNCs where the throughput may possibly be zero.