Kernel-based visual tracking with continuous adaptive distribution

被引:3
|
作者
Han, Risheng [1 ]
Jing, Zhongliang [2 ]
Li, Yuanxiang [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Aerosp Sci & Technol, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
mean shift; CAMSHIFT; histogram backprojection;
D O I
10.1117/1.3125423
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The template updating problem of Kernel-based tracking (KBT) includes two aspects: target-scale update and target-model update. The proposed algorithm can update both tracking window's scale and target model by making use of continuous adaptive distribution. The ability of KBT can be complemented within its own framework with modest computation cost. The proposed tracking algorithm tries to get a balance between the stability of KBT and adaptability of CAMSHIFT for creating a robust tracker. c 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3125423]
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Generalized Kernel-Based Visual Tracking
    Shen, Chunhua
    Kim, Junae
    Wang, Hanzi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2010, 20 (01) : 119 - 130
  • [2] An Improved Adaptive Kernel-based Object Tracking
    Liu Zhenghua
    Han Li
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 7588 - 7594
  • [3] Kernel-Based Adaptive Multiple Model Target Tracking
    Ghoshal, Debarshi Patanjali
    Gopalakrishnan, Kumar
    Michalska, Hannah
    2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 1338 - 1343
  • [4] An adaptive implementation of the kernel-based object tracking method
    Weng Muyun
    He Mingyi
    Zhang Yifan
    ICICIC 2006: FIRST INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING, INFORMATION AND CONTROL, VOL 2, PROCEEDINGS, 2006, : 354 - +
  • [5] Kernel Based Visual Tracking with Reasoning about Adaptive Distribution Image
    Han, Risheng
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT III, 2011, 7004 : 529 - 536
  • [6] Exploiting superpixel and hybrid hash for kernel-based visual tracking
    Wu, Guile
    Kang, Wenxiong
    PATTERN RECOGNITION, 2017, 68 : 175 - 190
  • [7] Kernel-Based Response-Adaptive Design for Continuous Responses
    Bandyopadhyay, Uttam
    Biswas, Atanu
    Bhattacharya, Rahul
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (16-17) : 2691 - 2705
  • [8] Kernel-based object tracking
    Comaniciu, D
    Ramesh, V
    Meer, P
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (05) : 564 - 577
  • [9] Kernel-based visual servoing
    Kallem, Vinutha
    Dewan, Maneesh
    Swensen, John P.
    Hager, Gregory D.
    Cowan, Noah J.
    2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, 2007, : 1981 - +
  • [10] KERNEL-BASED HIGH-DIMENSIONAL HISTOGRAM ESTIMATION FOR VISUAL TRACKING
    Karasev, Peter
    Malcolm, James
    Tannenbaum, Allen
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 2728 - 2731