Total variation asymptotics for sums of independent integer random variables

被引:0
|
作者
Barbour, AD [1 ]
Cekanavicius, V
机构
[1] Univ Zurich, Math Inst, Abt Angew Math, CH-8057 Zurich, Switzerland
[2] Vilnius State Univ, Dept Math Stat, LT-2600 Vilnius, Lithuania
来源
ANNALS OF PROBABILITY | 2002年 / 30卷 / 02期
关键词
compound Poisson; Stein's method; total variation distance; Kolmogorov's problem;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let W-n := Sigma(j-1)(n) (Zj) be a sum of independent integer-valued random variables. In this paper, we derive an asymptotic expansion for the probability P[W-n is an element of A] of an arbitrary subset A is an element of Z. Our approximation improves upon the classical expansions by including an explicit, uniform error estimate, involving only easily computable properties of the distributions of the Z(j): an appropriate number of moments and the total variation distance d(TV) (X (Zj), L(Z(j) + 1)). The proofs are based on Stein's method for signed compound Poisson approximation.
引用
收藏
页码:509 / 545
页数:37
相关论文
共 50 条