We use density functional theory to study the influence of fluid adsorption on the structure of grafted chain layer. The chains are modeled as freely jointed spheres. The chain segments and spherical molecules of the fluid interact via the Lennard-Jones potential. The fluid molecules are attracted by the substrate. We calculate the excess adsorption isotherms, the average height of tethered chains, and the force acting on selected segments of the chains. The parameters that were varied include the length of grafted chains, the grafting density, the parameters characterizing fluid-chain and fluid-surface interactions, the bulk fluid density, and temperature. We show that depending on the density of the bulk fluid the height of the bonded layer increases, remains constant, or decreases with increasing temperature. (C) 2014 AIP Publishing LLC.