Stability and Convergence of a Difference Scheme for a Singular Cauchy Problem

被引:0
|
作者
Ospanova, Ademi [1 ]
Kussainova, Leili [1 ]
机构
[1] LN Gumilyov Eurasian Natl Univ, Dept Mech & Math, Astana 010008, Kazakhstan
来源
WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL I | 2013年
关键词
difference scheme; stability; approximation and convergence of approximative scheme; EQUATIONS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the work we consider a model of difference scheme for a numerical solution of Cauchy problem for first order differential equation with the singularity at infinity. We build a sequence of discrete operators for the difference scheme and prove that the sequence is stable. Approximation and convergence theorems for the approximative scheme are proved on the solutions to the Cauchy problem.
引用
收藏
页码:222 / 225
页数:4
相关论文
共 50 条
  • [1] On the convergence of a difference scheme for a singular Cauchy problem
    Kusainova, L. K.
    Ospanova, A. B.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2012, 66 (02): : 76 - 80
  • [2] On the stability of one difference scheme for a singular Cauchy problem
    Ospanova, A. B.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2012, 66 (02): : 86 - 91
  • [3] Construction of a difference scheme for a singular Cauchy problem
    Ospanova, Ademi
    Kussainova, Leili
    IAENG TRANSACTIONS ON ENGINEERING SCIENCES, 2014, : 39 - 45
  • [4] Analysis of a Difference Scheme for a Singular Perturbation Cauchy Problem on Refined Grids
    Zadorin, A. I.
    Tikhovskaya, S. V.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2011, 4 (01) : 36 - 45
  • [5] CONDITIONAL STABILITY OF A SOLUTION OF A DIFFERENCE SCHEME FOR AN ILL-POSED CAUCHY PROBLEM
    Sultanov, Murat A.
    Akylbaev, Musabek I.
    Ibragimov, Raskul
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [6] STABILITY OF A FINITE-DIFFERENCE SCHEME OR SOLVING CAUCHY PROBLEM FOR A DEGENERATE HYPERBOLIC EQUATION
    KOKOSHKEVICH, A
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1971, 19 (06): : 511 - +
  • [7] On the stability and convergence of a difference scheme for an one-dimensional parabolic inverse problem
    Ye, Chao-rong
    Sun, Zhi-zhong
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) : 214 - 225
  • [8] A SPLINE DIFFERENCE SCHEME FOR A SINGULAR PERTURBATION PROBLEM
    UZELAC, Z
    SURLA, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (05): : T424 - T426
  • [9] A DIFFERENCE-DIFFERENTIAL SCHEME FOR THE GENERAL CAUCHY PROBLEM
    FRIEDMAN, A
    JOURNAL OF MATHEMATICS AND MECHANICS, 1962, 11 (06): : 891 - 905
  • [10] SINGULAR CAUCHY PROBLEM
    TERSENOV, SA
    DOKLADY AKADEMII NAUK SSSR, 1971, 196 (05): : 1032 - &