A robust global and local mixture distance based non-rigid point set registration

被引:122
|
作者
Yang, Yang [1 ,2 ,3 ,4 ]
Ong, Sim Heng [4 ,5 ,6 ]
Foong, Kelvin Weng Chiong [4 ,7 ]
机构
[1] Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650092, Yunnan, Peoples R China
[2] Yunnan Normal Univ, Engn Res Ctr GIS Technol Western China, Minist Educ China, Kunming 650092, Yunnan, Peoples R China
[3] Yunnan Normal Univ, Key Lab Educ Informatizat Nationalities, Minist Educ China, Kunming 650092, Yunnan, Peoples R China
[4] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore
[5] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[6] Natl Univ Singapore, Dept Bioengn, Singapore 117576, Singapore
[7] Natl Univ Singapore, Fac Dent, Singapore 119083, Singapore
关键词
Non-rigid point set registration; Global and local mixture distance; Correspondence estimation; Transformation updating; Multi-feature based framework; 3D; ALGORITHM; MOTION; 2D;
D O I
10.1016/j.patcog.2014.06.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a robust global and local mixture distance (GLMD) based non-rigid point set registration method which consists of an alternating two-step process: correspondence estimation and transformation updating. We first define two distance features for measuring global and local structural differences between two point sets, respectively. The two distances are then combined to form a GLMD based cost matrix which provides a flexible way to estimate correspondences by minimizing global or local structural differences using a linear assignment solution. To improve the correspondence estimation and enhance the interaction between the two steps, an annealing scheme is designed to gradually change the cost minimization from local to global and the thin plate spline transformation from rigid to non-rigid during registration. We test the performance of our method in contour registration, sequence images and real images, and compare with six state-of-the-art methods where our method shows the best alignments in most scenarios. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:156 / 173
页数:18
相关论文
共 50 条
  • [1] Robust Non-rigid Point Set Registration Based on Global and Local Mixture Structural Feature
    Cai, Changkai
    Zhu, Hao
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2452 - 2457
  • [2] Non-rigid point set registration via global and local constraints
    Yang, Changcai
    Zhang, Meifang
    Zhang, Zejun
    Wei, Lifang
    Chen, Riqing
    Zhou, Huabing
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (24) : 31607 - 31625
  • [3] Non-Rigid Point Set Registration by Preserving Global and Local Structures
    Ma, Jiayi
    Zhao, Ji
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (01) : 53 - 64
  • [4] A robust non-rigid point set registration algorithm using both local and global constraints
    Chen, Qing-Yan
    Feng, Da-Zheng
    Hu, Hao-Shuang
    [J]. VISUAL COMPUTER, 2023, 39 (03): : 1217 - 1234
  • [5] A robust non-rigid point set registration algorithm using both local and global constraints
    Qing-Yan Chen
    Da-Zheng Feng
    Hao-Shuang Hu
    [J]. The Visual Computer, 2023, 39 : 1217 - 1234
  • [6] Non-rigid point set registration via global and local constraints
    Changcai Yang
    Meifang Zhang
    Zejun Zhang
    Lifang Wei
    Riqing Chen
    Huabing Zhou
    [J]. Multimedia Tools and Applications, 2018, 77 : 31607 - 31625
  • [7] A robust non-rigid point set registration method based on inhomogeneous Gaussian mixture models
    Wanxia Deng
    Huanxin Zou
    Fang Guo
    Lin Lei
    Shilin Zhou
    Tiancheng Luo
    [J]. The Visual Computer, 2018, 34 : 1399 - 1414
  • [8] A robust non-rigid point set registration method based on inhomogeneous Gaussian mixture models
    Deng, Wanxia
    Zou, Huanxin
    Guo, Fang
    Lei, Lin
    Zhou, Shilin
    Luo, Tiancheng
    [J]. VISUAL COMPUTER, 2018, 34 (10): : 1399 - 1414
  • [9] Robust Non-rigid Point Set Registration based on Dynamic Tree
    Qu, Di
    Du, Shaoyi
    Liu, Juan
    Wang, Yike
    Xue, Jianru
    [J]. 2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 707 - 711
  • [10] Non-rigid Point Set Registration with Global-Local Topology Preservation
    Ge, Song
    Fan, Guoliang
    Ding, Meng
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, : 245 - 251