Target Tracking Formulation of the SVSF as a Probabilistic Data Association Algorithm

被引:0
|
作者
Attari, Mina [1 ]
Gadsden, S. Andrew [1 ]
Habibi, Saeid R. [1 ]
机构
[1] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Target tracking algorithms are important for a number of applications, including: physics, air traffic control, ground vehicle monitoring, and processing medical images. The probabilistic data association algorithm, in conjunction with the Kalman filter (KF), is one of the most popular and well-studied strategies. The relatively new smooth variable structure filter (SVSF) offers a robust and stable estimation strategy under the presence of modeling errors, unlike the KF method. The purpose of this paper is to introduce and formulate the SVSF-PDA, which can be used for target tracking. A simple example is used to compare the estimation results of the popular KF-PDA with the new SVSF-PDA.
引用
收藏
页码:6328 / 6332
页数:5
相关论文
共 50 条
  • [1] A Multi-Target Tracking Formulation of SVSF with the Joint Probabilistic Data Association Technique
    Attari, Mina
    Gadsden, S. Andrew
    Habibi, Saeid R.
    7TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2014, VOL 2, 2014,
  • [2] Target Tracking Formulation of the SVSF With Data Association Techniques
    Attari, Mina
    Habibi, Saeid
    Gadsden, Stephen Andrew
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2017, 53 (01) : 12 - 25
  • [3] Decoupling joint probabilistic data association algorithm for multiple target tracking
    Ding, Z
    Leung, H
    Hong, L
    IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1999, 146 (05) : 251 - 254
  • [4] IMM fuzzy probabilistic data association algorithm for tracking maneuvering target
    Turkmen, Ilke
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (02) : 1243 - 1249
  • [5] Target-tracking algorithm based on improved probabilistic data association
    Huang, Xiaojie
    Zhang, Jiaguo
    JOURNAL OF ENGINEERING-JOE, 2023, 2023 (11):
  • [6] An interacting multiple models probabilistic data association algorithm for maneuvering target tracking in clutter
    Li, Xingxiu
    Wu, Panlong
    Zhang, Xinyu
    PROCEEDINGS OF THE 2015 INTERNATIONAL SYMPOSIUM ON COMPUTERS & INFORMATICS, 2015, 13 : 1685 - 1692
  • [7] An interacting multipattern probabilistic data association (IMP-PDA) algorithm for target tracking
    Hong, L
    Cui, NZ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (08) : 1223 - 1236
  • [8] Probabilistic data association techniques for target tracking in clutter
    Kirubarajan, T
    Bar-Shalom, Y
    PROCEEDINGS OF THE IEEE, 2004, 92 (03) : 536 - 557
  • [9] Square-Root Formulation of the SVSF with Applications to Nonlinear Target Tracking Problems
    Gadsden, S. A.
    Al-Shabi, M.
    Kirubarajan, T.
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXIV, 2015, 9474
  • [10] An Improved Target Tracking Data Association Algorithm
    Zuo Xiangang
    Yu Zhou
    PROCEEDINGS OF 2009 CONFERENCE ON COMMUNICATION FACULTY, 2009, : 476 - 480