Cosmological Post-Newtonian Expansions to Arbitrary Order

被引:11
|
作者
Oliynyk, Todd A. [1 ]
机构
[1] Monash Univ, Sch Math Sci, Melbourne, Vic 3800, Australia
关键词
PARTIAL-DIFFERENTIAL EQUATIONS; DIFFERENT TIME SCALES; GENERAL-RELATIVITY; HYPERBOLIC SYSTEMS; LARGE PARAMETER; PERFECT FLUIDS; APPROXIMATION; UNIVERSE; LIMIT; EXISTENCE;
D O I
10.1007/s00220-009-0931-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the existence of a large class of one parameter families of solutions to the Einstein-Euler equations that depend on the singular parameter epsilon = nu(T)/c (0 < epsilon < epsilon(0)), where c is the speed of light, and nu(T) is a typical speed of the gravitating fluid. These solutions are shown to exist on a common spacetime slab M congruent to [0, T) x T(3), and converge as epsilon SE arrow 0 to a solution of the cosmological Poisson-Euler equations of Newtonian gravity. Moreover, we establish that these solutions can be expanded in the parameter epsilon to any specified order with expansion coefficients that satisfy epsilon-independent (nonlocal) symmetric hyperbolic equations.
引用
收藏
页码:431 / 463
页数:33
相关论文
共 50 条
  • [1] Cosmological Post-Newtonian Expansions to Arbitrary Order
    Todd A. Oliynyk
    [J]. Communications in Mathematical Physics, 2010, 295 : 431 - 463
  • [2] Post-Newtonian Maclaurin spheroids to arbitrary order
    Petroff, D
    [J]. PHYSICAL REVIEW D, 2003, 68 (10)
  • [3] Post-Newtonian cosmological modelling
    Sanghai, Viraj A. A.
    Clifton, Timothy
    [J]. PHYSICAL REVIEW D, 2015, 91 (10):
  • [4] Post-Newtonian Expansions for Perfect Fluids
    Todd A. Oliynyk
    [J]. Communications in Mathematical Physics, 2009, 288
  • [5] Post-Newtonian Expansions for Perfect Fluids
    Oliynyk, Todd A.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (03) : 847 - 886
  • [6] Newtonian, Post-Newtonian and Relativistic Cosmological Perturbation Theory
    Hwang, Jai-chan
    Noh, Hyerim
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2014, 246 : 191 - 195
  • [7] Post-Newtonian approximation of the rigidly rotating disc of dust to arbitrary order
    Petroff, D
    Meinel, R
    [J]. PHYSICAL REVIEW D, 2001, 63 (06)
  • [8] Post-Newtonian cosmological dynamics in Lagrangian coordinates
    Matarrese, S
    Terranova, D
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1996, 283 (02) : 400 - 418
  • [9] Analytical high-order post-Newtonian expansions for extreme mass ratio binaries
    Kavanagh, Chris
    Ottewill, Adrian C.
    Wardell, Barry
    [J]. PHYSICAL REVIEW D, 2015, 92 (08):
  • [10] POST-NEWTONIAN EQUATIONS OF MOTION IN FLAT COSMOLOGICAL MODELS
    TOMITA, K
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1991, 85 (05): : 1041 - 1047