Absorbing-state phase transitions on percolating lattices

被引:10
|
作者
Lee, Man Young [1 ]
Vojta, Thomas [1 ,2 ]
机构
[1] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 04期
关键词
critical points; fluctuations; geometry; Monte Carlo methods; percolation; phase transformations; reaction-diffusion systems; CELLULAR-AUTOMATA; FIELD-THEORY; REALIZATIONS; UNIVERSALITY; BEHAVIOR; QUANTUM; MODEL;
D O I
10.1103/PhysRevE.79.041112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study nonequilibrium phase transitions of reaction-diffusion systems defined on randomly diluted lattices, focusing on the transition across the lattice percolation threshold. To develop a theory for this transition, we combine classical percolation theory with the properties of the supercritical nonequilibrium system on a finite-size cluster. In the case of the contact process, the interplay between geometric criticality due to percolation and dynamical fluctuations of the nonequilibrium system leads to a different universality class. The critical point is characterized by ultraslow activated dynamical scaling and accompanied by strong Griffiths singularities. To confirm the universality of this exotic scaling scenario we also study the generalized contact process with several (symmetric) absorbing states and we support our theory by extensive Monte Carlo simulations.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Moment ratios for absorbing-state phase transitions
    Dickman, R
    da Silva, JKL
    [J]. PHYSICAL REVIEW E, 1998, 58 (04) : 4266 - 4270
  • [2] Weakly disordered absorbing-state phase transitions
    Hoyos, Jose A.
    [J]. PHYSICAL REVIEW E, 2008, 78 (03):
  • [3] Continuous and discontinuous absorbing-state phase transitions on Voronoi-Delaunay random lattices
    de Oliveira, Marcelo M.
    Alves, Sidiney G.
    Ferreira, Silvio C.
    [J]. PHYSICAL REVIEW E, 2016, 93 (01):
  • [4] Absorbing-state phase transitions with extremal dynamics
    Dickman, R
    Garcia, GJM
    [J]. PHYSICAL REVIEW E, 2005, 71 (06):
  • [5] Absorbing-state phase transitions: Exact solutions of small systems
    Dickman, Ronald
    [J]. PHYSICAL REVIEW E, 2008, 77 (03):
  • [6] Infinitely-many absorbing-state nonequilibrium phase transitions
    van Wijland, F
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2003, 33 (03) : 551 - 556
  • [7] Absorbing-state phase transitions in fixed-energy sandpiles
    Vespignani, A
    Dickman, R
    Muñoz, MA
    Zapperi, S
    [J]. PHYSICAL REVIEW E, 2000, 62 (04): : 4564 - 4582
  • [8] Lifespan method as a tool to study criticality in absorbing-state phase transitions
    Mata, Angelica S.
    Boguna, Marian
    Castellano, Claudio
    Pastor-Satorras, Romualdo
    [J]. PHYSICAL REVIEW E, 2015, 91 (05):
  • [9] Equivalence of conditional and external field ensembles in absorbing-state phase transitions
    Pruessner, Gunnar
    [J]. PHYSICAL REVIEW E, 2007, 76 (06):
  • [10] Absorbing-State Transitions in Granular Materials Close to Jamming
    Ness, Christopher
    Cates, Michael E.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (08)