Robust support vector regression for biophysical variable estimation from remotely sensed images

被引:130
|
作者
Camps-Valls, Gustavo [1 ]
Bruzzone, Lorenzo
Rojo-Alvarez, Jose L.
Melgani, Farid
机构
[1] Univ Valencia, Escola Tecn Super Engn, Dept Elect Engn, Grp Processament Digital Senyals, E-46100 Valencia, Spain
[2] Univ Trent, Dept Informat & Commun Technol, I-38050 Trento, Italy
[3] Univ Carlos III Madrid, Dept Teoria Senal & Comunicac, Madrid 28911, Spain
关键词
biophysical parameter estimation; medium resolution Imaging spectrometer (MERIS); ocean chlorophyll concentration; regression; robust cost function; sea-viewing wide field-of-view sensor (SeaWiFS)/SeaWiFS bio-optical algorithm mini-workshop; support vector machine (SVM);
D O I
10.1109/LGRS.2006.871748
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter introduces the epsilon-Huber loss function in the support vector regression (SVR) formulation for the estimation of biophysical parameters extracted from remotely sensed data. This cost function can handle the different types of noise contained in the dataset. The method is successfully compared to other cost functions in the SVR framework, neural networks and classical, bio-optical models for the particular case of the estimation of ocean chlorophyll concentration from satellite remote sensing data. The proposed model provides more accurate, less biased, and improved robust estimation results on the considered case study, especially significant when few in situ measurements are available.
引用
收藏
页码:339 / 343
页数:5
相关论文
共 50 条
  • [1] A Semisupervised Support Vector Regression Method to Estimate Biophysical Parameters from Remotely Sensed Images
    Castelletti, Davide
    Demir, Beguem
    Bruzzone, Lorenzo
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XX, 2014, 9244
  • [2] A Novel Active Learning Method for Support Vector Regression to Estimate Biophysical Parameters from Remotely Sensed Images
    Demir, Beguem
    Bruzzone, Lorenzo
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVIII, 2012, 8537
  • [3] Support Vector Machines for road extraction from remotely sensed images
    Yager, N
    Sowmya, A
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2003, 2756 : 285 - 292
  • [4] QUANTUM SUPPORT VECTOR REGRESSION FOR BIOPHYSICAL VARIABLE ESTIMATION IN REMOTE SENSING
    Pasetto, Edoardo
    Delilbasic, Amer
    Cavallaro, Gabriele
    Willsch, Madita
    Melgani, Farid
    Riedel, Morris
    Michielsen, Kristel
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4903 - 4906
  • [5] Biophysical Parameters Estimation from Remotely Sensed Images by A Multiple Criteria Active Learning Method
    Demir, Begum
    Bruzzone, Lorenzo
    [J]. 2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 1979 - 1982
  • [6] Support vector machines for broad area feature classification in remotely sensed images
    Perkins, S
    Harvey, NR
    Brumby, SP
    Lacker, K
    [J]. ALGORITHMS FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY VII, 2001, 4381 : 286 - 295
  • [7] A NOVEL HYBRID APPROACH TO THE ESTIMATION OF BIOPHYSICAL PARAMETERS FROM REMOTELY SENSED DATA
    Pasolli, Luca
    Bruzzone, Lorenzo
    Notarnicola, Claudia
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1231 - 1234
  • [8] Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data
    Bruzzone, L
    Melgani, F
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (01): : 159 - 174
  • [9] Fusion of remotely sensed data for soil moisture estimation using relevance vector and support vector machines
    Zaman, Bushra
    McKee, Mac
    Neale, Christopher M. U.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (20) : 6516 - 6552
  • [10] Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation
    Tuia, Devis
    Verrelst, Jochem
    Alonso, Luis
    Perez-Cruz, Fernando
    Camps-Valls, Gustavo
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) : 804 - 808