Numerical computation of nonlinear normal modes in mechanical engineering

被引:123
|
作者
Renson, L. [1 ]
Kerschen, G. [1 ]
Cochelin, B. [2 ]
机构
[1] Univ Liege, Dept Aerosp & Mech Engn, Space Struct & Syst Lab, Liege, Belgium
[2] Aix Marseille Univ, Cent Marseille, LMA, CNRS UPR 7051, F-13451 Marseille, France
关键词
HARMONIC-BALANCE METHOD; PERIODIC-SOLUTIONS; MODAL-ANALYSIS; FREE-VIBRATIONS; FINITE-ELEMENT; BIFURCATION-ANALYSIS; LINEAR-OSCILLATOR; COMPLEX DYNAMICS; CONTINUATION; SYSTEMS;
D O I
10.1016/j.jsv.2015.09.033
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper reviews the recent advances in computational methods for nonlinear normal modes (NNMs). Different algorithms for the computation of undamped and damped NNMs are presented, and their respective advantages and limitations are discussed. The methods are illustrated using various applications ranging from low-dimensional weakly nonlinear systems to strongly nonlinear industrial structures. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:177 / 206
页数:30
相关论文
共 50 条
  • [1] NUMERICAL COMPUTATION OF NONLINEAR NORMAL MODES OF NONCONSERVATIVE SYSTEMS
    Renson, L.
    Kerschen, G.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 7B, 2014,
  • [2] Numerical computation of nonlinear normal modes in a modal derivative subspace
    Sombroek, C. S. M.
    Tiso, P.
    Renson, L.
    Kerschen, G.
    COMPUTERS & STRUCTURES, 2018, 195 : 34 - 46
  • [3] Development of Numerical Algorithms for Practical Computation of Nonlinear Normal Modes
    Peeters, M.
    Georgiades, F.
    Viguie, R.
    Serandour, G.
    Kerschen, G.
    Golinval, J. C.
    PROCEEDINGS OF ISMA 2008: INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING, VOLS. 1-8, 2008, : 2373 - 2386
  • [4] Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques
    Peeters, M.
    Viguie, R.
    Serandour, G.
    Kerschen, G.
    Golinval, J. -C.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (01) : 195 - 216
  • [5] On the numerical computation of nonlinear normal modes for reduced-order modelling of conservative vibratory systems
    Blanc, F.
    Touze, C.
    Mercier, J. -F.
    Ege, K.
    Ben-Dhia, A. -S. Bonnet
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 36 (02) : 520 - 539
  • [6] On the computation of the slow dynamics of nonlinear modes of mechanical systems
    Krack, Malte
    Panning-von Scheidt, Lars
    Wallaschek, Joerg
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2014, 42 (1-2) : 71 - 87
  • [7] A numerical method for determining nonlinear normal modes
    Slater, JC
    NONLINEAR DYNAMICS, 1996, 10 (01) : 19 - 30
  • [8] Finite element computation of nonlinear normal modes of nonconservative systems
    Renson, L.
    Deliege, G.
    Kerschen, G.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2012) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2012), 2012, : 2519 - 2533
  • [9] Computation of nonlinear modes of non-conservative mechanical systems
    Jahn, M.
    Tatzko, S.
    Panning-von Scheidt, L.
    Wallaschek, J.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2018) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2018), 2018, : 2687 - 2700
  • [10] Numerical calculation of nonlinear normal modes in structural systems
    Thomas D. Burton
    Nonlinear Dynamics, 2007, 49 : 425 - 441