A pseudo-rigid model for the dynamical simulation of flexible mechanisms

被引:3
|
作者
Pascal, M [1 ]
Gagarina, T [1 ]
机构
[1] Univ Paris 06, LMM, F-75252 Paris 05, France
关键词
flexible multibody systems; dynamical codes; variational methods; Rayleigh-Ritz discretization procedure; inverse problems; symbolic computation;
D O I
10.1023/A:1009872629790
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The aim of this work is to show the possibility of using any dynamical codes devoted to rigid multibody systems in which the motion equations are obtained from the d'Alembert Principle, for the simulation of flexible multibody systems in which the flexible components are discretized by a Rayleigh-Ritz procedure. The results obtained are a generalization of the work done by Botz and Hagedorn [1] for planar elastic mechanisms. An application of the method is done using the symbolic dynamical code AUTOLEV [2].
引用
收藏
页码:303 / 331
页数:29
相关论文
共 50 条
  • [1] A Pseudo-Rigid Model for the Dynamical Simulation of Flexible Mechanisms
    M. Pascal
    T. Gagarina
    Multibody System Dynamics, 1999, 3 : 303 - 331
  • [2] On pseudo-rigid bodies
    Steigmann, DJ
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2066): : 559 - 565
  • [3] A Pseudo-rigid model for the inverse dynamics of an Euler beam
    Mandali, Priyanka
    Sun, Qiao
    Kanamiya, Yoshikazu
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (08) : 3854 - 3865
  • [4] A PSEUDO-RIGID BODY MODEL FOR COMPLIANT EDGE PANELS IN ORIGAMI-INSPIRED MECHANISMS
    Yellowhorse, Alden
    Howell, Larry L.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2016, VOL 5B, 2016,
  • [5] The pseudo-rigid rolling coin
    Epstein, Marcelo
    Defaz, R. Ivan
    Journal of Applied Mechanics, Transactions ASME, 2005, 72 (05): : 695 - 704
  • [6] The ideal pseudo-rigid continuum
    Casey, James
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2074): : 3185 - 3195
  • [7] The pseudo-rigid rolling coin
    Epstein, M
    Defaz, RI
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2005, 72 (05): : 695 - 704
  • [8] A new definition of a pseudo-rigid continuum
    Casey, James
    NOTE DI MATEMATICA, 2007, 27 (02): : 43 - 53
  • [9] Impact of an elastic pseudo-rigid body on a rigid foundation
    Solberg, JM
    Papadopoulos, P
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2000, 38 (06) : 589 - 603
  • [10] Pseudo-rigid ball impact on an oscillating rigid foundation
    Kanso, E
    Papadopoulos, P
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2004, 39 (07) : 1129 - 1145