Meta-heuristic algorithms for parameter estimation of semi-parametric linear regression models

被引:4
|
作者
Zheng, Guoqing [1 ]
Zhang, Pingjian
机构
[1] S China Agr Univ, Dept Math, Guangzhou 510640, Peoples R China
[2] S China Univ Technol, Sch Software Engn, Guangzhou 510641, Peoples R China
关键词
generalized likelihood; simulated annealing algorithm; semi-parametric models; running cost;
D O I
10.1016/j.csda.2005.09.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Consider the semi-parametric linear regression model Y = beta'X + epsilon, where epsilon has an unknown distribution F-0 . The semi-parametric MLE beta of beta under this set-up is called the generalized semi-parametric MLE(GSMLE). Although the GSML estimation of the linear regression model is statistically appealing, it has never been attempted due to difficulties with obtaining the GSML estimates of beta and F until recent work on linear regression for complete data and for right-censored data by Yu and Wong [2003a. Asymptotic properties of the generalized semi-parametric MLE in linear regression. Statistica Sinica 13, 311-326; 2003b. Semi-parametric MLE in simple linear regression analysis with interval-censored data. Commun. Statist.-Simulation Comput. 32, 147-164; 2003c. The semi-parametric MLE in linear regression with right censored data. J. Statist. Comput. Simul. 73, 833-848]. However, after obtaining all candidates, their algorithm simply does an exhaustive search to find the GSML estimators. In this paper, it is shown that Yu and Wong's algorithm leads to the so-called dimension disaster. Based on their idea, a simulated annealing algorithm for finding semi-parametric MLE is proposed along with techniques to reduce computations. Experimental results show that the new algorithm runs much faster for multiple linear regression models while keeping the nice features of Yu and Wong's original one. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:801 / 808
页数:8
相关论文
共 50 条
  • [1] Parameter Estimation for Semi-parametric Regression Model with Linear Constraints
    Xia, Yafeng
    Wu, Yongdong
    [J]. 2012 THIRD INTERNATIONAL CONFERENCE ON THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (ICTMF 2012), 2013, 38 : 355 - 359
  • [2] Estimation of Muskingum parameter by meta-heuristic algorithms
    Orouji, Hossein
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, Elahe
    Marino, Miguel A.
    Barati, Reza
    [J]. PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2014, 167 (06) : 365 - 367
  • [3] Estimation of Muskingum parameter by meta-heuristic algorithms
    Orouji, Hossein
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, Elahe
    Marino, Miguel A.
    [J]. PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2013, 166 (06) : 315 - 324
  • [4] Parameter Estimation of Two Spiking Neuron Models With Meta-Heuristic Optimization Algorithms
    AbdelAty, Amr M.
    Fouda, Mohammed E.
    Eltawil, Ahmed
    [J]. FRONTIERS IN NEUROINFORMATICS, 2022, 16
  • [5] truncSP: An R Package for Estimation of Semi-Parametric Truncated Linear Regression Models
    Karlsson, Maria
    Lindmark, Anita
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2014, 57 (14): : 1 - 19
  • [6] Estimation with improved efficiency in semi-parametric linear longitudinal models
    Warriyar, Vineetha K. V.
    Sutradhar, Brajendra C.
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2014, 28 (04) : 561 - 586
  • [7] A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models
    Li, Shuijia
    Gong, Wenyin
    Gu, Qiong
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 141
  • [9] Semi-parametric estimation for ARCH models
    Alzghool, Raed
    Al-Zubi, Loai M.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (01) : 367 - 373
  • [10] Estimation of general semi-parametric quantile regression
    Fan, Yan
    Zhu, Lixing
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (05) : 896 - 910