Stable projective planes with Riemannian metrics

被引:4
|
作者
Gerlich, G [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geometrie, D-38106 Braunschweig, Germany
关键词
Riemannian Manifold; Projective Plane; Riemannian Metrics; Complete Riemannian Manifold; Stable Plane;
D O I
10.1007/s00013-002-8318-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the question whether the system of lines of a two-dimensional stable plane can be described as the system of geodesics of a Riemannian metric and vice versa; we present two results: A complete two-dimensional Riemannian manifold with the property that every two points are joined by a unique geodesic and its family of geodesics form a stable plane. On the other hand every stable projective plane whose lines are geodesics of a Riemannian metric is isometric to the real projective plane. Combining both results it follows that it is impossible to realize the lines of a non-desarguesian projective plane using the geodesics of a complete Riemannian manifold.
引用
收藏
页码:317 / 320
页数:4
相关论文
共 50 条
  • [1] Stable projective planes with Riemannian metrics
    G. Gerlich
    Archiv der Mathematik, 2002, 79 : 317 - 320
  • [2] Stable periodic projective planes
    Ritore, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (12) : 3851 - 3856
  • [3] On projective and affine equivalence of sub-Riemannian metrics
    Jean, Frederic
    Maslovskaya, Sofya
    Zelenko, Igor
    GEOMETRIAE DEDICATA, 2019, 203 (01) : 279 - 319
  • [4] On projective and affine equivalence of sub-Riemannian metrics
    Frédéric Jean
    Sofya Maslovskaya
    Igor Zelenko
    Geometriae Dedicata, 2019, 203 : 279 - 319
  • [5] PROJECTIVE VECTOR FIELDS ON THE TANGENT BUNDLE WITH A CLASS OF RIEMANNIAN METRICS
    Gezer, Aydin
    Bilen, Lokman
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (05): : 587 - 596
  • [6] Generalized normal homogeneous Riemannian metrics on spheres and projective spaces
    Valeriĭ Nikolaevich Berestovskiĭ
    Yuriĭ Gennadievich Nikonorov
    Annals of Global Analysis and Geometry, 2014, 45 : 167 - 196
  • [7] Generalized normal homogeneous Riemannian metrics on spheres and projective spaces
    Berestovskii, Valerii Nikolaevich
    Nikonorov, Yurii Gennadievich
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2014, 45 (03) : 167 - 196
  • [8] (Semi-)Riemannian geometry of (para-)octonionic projective planes
    Held, Rowena
    Stavrov, Iva
    VanKoten, Brian
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2009, 27 (04) : 464 - 481
  • [9] EXTREMAL LENGTHS OF RIEMANNIAN METRICS IN REAL PROJECTIVE SPACES - PRELIMINARY REPORT
    CHAVEL, I
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (04): : 659 - &
  • [10] INVARIANT RIEMANNIAN AND PSEUDORIEMANNIAN METRICS IN MANIFOLDS OF IMAGES OF PROJECTIVE-SPACE COSYMMETRY
    BOGUSLAVSKAYA, TM
    POLOVTSEVA, MA
    TIMOSHENKO, TA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1990, (12): : 21 - 31