Eco-evolutionary dynamics in fragmented landscapes

被引:87
|
作者
Legrand, Delphine [1 ,2 ,8 ]
Cote, Julien [3 ]
Fronhofer, Emanuel A. [4 ,5 ]
Holt, Robert D. [6 ]
Ronce, Ophelie [7 ]
Schtickzelle, Nicolas [8 ]
Travis, Justin M. J. [9 ]
Clobert, Jean [1 ,2 ]
机构
[1] CNRS, Moulis, France
[2] Univ Paul Sabatier Toulouse III, SETE, UMR 5321, Moulis, France
[3] Univ Paul Sabatier Toulouse III, UMR 5174, Lab Evolut & Diversite Biol, Toulouse, France
[4] Eawag Swiss Fed Inst Aquat Sci & Technol, Dept Aquat Ecol, Dubendorf, Switzerland
[5] Univ Zurich, Dept Evolutionary Biol & Environm Studies, Zurich, Switzerland
[6] Univ Florida, Dept Biol, Gainesville, FL USA
[7] Univ Montpellier 2, CNRS, IRD, Inst Sci Evolut,EPHE,CC65, Montpellier, France
[8] Catholic Univ Louvain, Earth & Life Inst, Biodivers Res Ctr, Louvain La Neuve, Belgium
[9] Univ Aberdeen, Sch Biol Sci, Aberdeen, Scotland
关键词
MATCHING HABITAT CHOICE; LOCAL ADAPTATION; GENE FLOW; FUNCTIONAL GENOMICS; DISPERSAL SYNDROMES; DENSITY-DEPENDENCE; RAPID EVOLUTION; POPULATION-SIZE; JOINT EVOLUTION; DAPHNIA-MAGNA;
D O I
10.1111/ecog.02537
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
It is widely recognized that ecological dynamics influence evolutionary dynamics, and conversely that evolutionary changes alter ecological processes. Because fragmentation impacts all biological levels (from individuals to ecosystems) through isolation and reduced habitat size, it strongly affects the links among evolutionary and ecological processes such as population dynamics, local adaptation, dispersal and speciation. Here, we review our current knowledge of the eco-evolutionary dynamics in fragmented landscapes, focusing on both theory and experimental studies. We then suggest future experimental directions to study eco-evolutionary dynamics and/or feedbacks in fragmented landscapes, especially to bridge the gap between theoretical predictions and experimental validations.
引用
收藏
页码:9 / 25
页数:17
相关论文
共 50 条
  • [1] ECO-EVOLUTIONARY DYNAMICS
    MacColl, Andrew
    [J]. QUARTERLY REVIEW OF BIOLOGY, 2017, 92 (03): : 321 - 322
  • [2] Eco-evolutionary dynamics
    Hendry, Andrew
    [J]. GENES & GENETIC SYSTEMS, 2012, 87 (06) : 374 - 374
  • [3] Eco-evolutionary dynamics
    Pelletier, F.
    Garant, D.
    Hendry, A. P.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2009, 364 (1523) : 1483 - 1489
  • [4] Cryptic eco-evolutionary dynamics
    Kinnison, Michael T.
    Hairston, Nelson G., Jr.
    Hendry, Andrew P.
    [J]. YEAR IN EVOLUTIONARY BIOLOGY, 2015, 1360 : 120 - 144
  • [5] A critique for eco-evolutionary dynamics
    Hendry, Andrew P.
    [J]. FUNCTIONAL ECOLOGY, 2019, 33 (01) : 84 - 94
  • [6] Eco-evolutionary dynamics of autotomy
    Rohan S. Mehta
    Julie A. Kraus
    [J]. Theoretical Ecology, 2021, 14 : 445 - 465
  • [7] Eco-evolutionary dynamics of autotomy
    Mehta, Rohan S.
    Kraus, Julie A.
    [J]. THEORETICAL ECOLOGY, 2021, 14 (03) : 445 - 465
  • [8] Eco-evolutionary dynamics of social dilemmas
    Gokhale, Chaitanya S.
    Hauert, Christoph
    [J]. THEORETICAL POPULATION BIOLOGY, 2016, 111 : 28 - 42
  • [9] Eco-evolutionary dynamics in freshwater systems
    De Meester, Luc
    Pantel, Jelena
    [J]. JOURNAL OF LIMNOLOGY, 2014, 73 : 193 - 200
  • [10] Eco-evolutionary dynamics of range expansion
    Miller, Tom E. X.
    Angert, Amy L.
    Brown, Carissa D.
    Lee-Yaw, Julie A.
    Lewis, Mark
    Lutscher, Frithjof
    Marculis, Nathan G.
    Melbourne, Brett A.
    Shaw, Allison K.
    Szucs, Marianna
    Tabares, Olivia
    Usui, Takuji
    Weiss-Lehman, Christopher
    Williams, Jennifer L.
    [J]. ECOLOGY, 2020, 101 (10)