On near-best discrete quasi-interpolation on a four-directional mesh

被引:21
|
作者
Barrera, D. [1 ]
Ibanez, M. J. [1 ]
Sablonniere, P. [2 ]
Sbibih, D. [3 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, E-18071 Granada, Spain
[2] INSA Rennes, F-35043 Rennes, France
[3] Univ Mohammed 1, Fac Sci, Dept Math & Informat, Oujda 60000, Morocco
关键词
Omega-splines; Discrete quasi-interpolants; Near-best quasi-interpolants; B-SPLINES;
D O I
10.1016/j.cam.2009.02.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spline quasi-interpolants are practical and effective approximation operators. In this paper, we construct QIs with optimal approximation orders and small infinity norms called near-best discrete quasi-interpolants which are based on Omega-splines, i.e. B-splines with octagonal supports on the uniform four-directional mesh of the plane. These quasi-interpolants are exact on some space of polynomials and they minimize an upper bound of their infinity norms depending on a finite number of free parameters. We show that this problem has always a solution, in general nonunique. Concrete examples of such quasi-interpolants are given in the last section. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1470 / 1477
页数:8
相关论文
共 30 条
  • [1] Trivariate near-best blending spline quasi-interpolation operators
    D. Barrera
    C. Dagnino
    M. J. Ibáñez
    S. Remogna
    [J]. Numerical Algorithms, 2018, 78 : 217 - 241
  • [2] Trivariate near-best blending spline quasi-interpolation operators
    Barrera, D.
    Dagnino, C.
    Ibanez, M. J.
    Remogna, S.
    [J]. NUMERICAL ALGORITHMS, 2018, 78 (01) : 217 - 241
  • [3] Near-best operators based on a C2 quartic spline on the uniform four-directional mesh
    Ameur, El Bachir
    Barrera, Domingo
    Ibanez, Maria J.
    Sbibih, Driss
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 77 (2-3) : 151 - 160
  • [4] Near-Best Univariate Spline Discrete Quasi-Interpolants on Nonuniform Partitions
    Barrera, D.
    Ibanez, M. J.
    Sablonniere, P.
    Sbibih, D.
    [J]. CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) : 237 - 251
  • [5] Near-Best Univariate Spline Discrete Quasi-Interpolants on Nonuniform Partitions
    D. Barrera
    M. J. Ibáñez
    P. Sablonnière
    D. Sbibih
    [J]. Constructive Approximation, 2008, 28 : 237 - 251
  • [6] FINITE ELEMENT QUASI-INTERPOLATION AND BEST APPROXIMATION
    Ern, Alexandre
    Guermond, Jean-Luc
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (04): : 1367 - 1385
  • [7] Cubic spline prewavelets on the four-directional mesh
    Buhmann, MD
    Davydov, O
    Goodman, TNT
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2003, 3 (02) : 113 - 133
  • [8] Cubic Spline Prewavelets on the Four-Directional Mesh
    [J]. Foundations of Computational Mathematics, 2003, 3 : 113 - 133
  • [9] Quasi-interpolation for near-boundary approximations
    Amir, Anat
    Levin, David
    [J]. JAEN JOURNAL ON APPROXIMATION, 2019, 11 (1-2): : 67 - 89
  • [10] Constants in Discrete Poincare and Friedrichs Inequalities and Discrete Quasi-Interpolation
    Carstensen, Carsten
    Hellwig, Friederike
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (03) : 433 - 450