3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair

被引:52
|
作者
Hamid, Omar A. [1 ,2 ]
Eltaher, Hoda M. [2 ,3 ]
Sottile, Virginie [4 ,5 ]
Yang, Jing [2 ]
机构
[1] Univ Mosul, Coll Pharm, Pharmaceut Div, Mosul 41002, Iraq
[2] Univ Nottingham, Fac Sci, Regenerat Med & Cellular Therapies Div, Univ Pk, Nottingham NG7 2RD, England
[3] Alexandria Univ, Fac Pharm, Dept Pharmaceut, Alexandria 21521, Egypt
[4] Univ Nottingham, Sch Med, Univ Pk, Nottingham NG7 2RD, England
[5] Univ Pavia, Dept Mol Med, I-27100 Pavia, Italy
关键词
3D printing; Hydrogels; Polycaprolactone; Gradient; Embryoid body (EB); Neural differentiation; Nerve regeneration; RETINOIC-ACID; NEURAL-TUBE; CONCENTRATION GRADIENTS; REGENERATIVE THERAPIES; GROWTH-FACTOR; SYSTEM; DIFFERENTIATION; HYDROGELS; CONSTRUCTS; STRATEGIES;
D O I
10.1016/j.msec.2020.111707
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Development of a biomimetic tubular scaffold capable of recreating developmental neurogenesis using pluripotent stem cells offers a novel strategy for the repair of spinal cord tissues. Recent advances in 3D printing technology have facilitated biofabrication of complex biomimetic environments by precisely controlling the 3D arrangement of various acellular and cellular components (biomaterials, cells and growth factors). Here, we present a 3D printing method to fabricate a complex, patterned and embryoid body (EB)-laden tubular scaffold composed of polycaprolactone (PCL) and hydrogel (alginate or gelatine methacrylate (GelMA)). Our results revealed 3D printing of a strong, macro-porous PCL/hydrogel tubular scaffold with a high capacity to control the porosity of the PCL scaffold, wherein the maximum porosity in the PCL wall was 15%. The method was equally employed to create spatiotemporal protein concentration within the scaffold, demonstrating its ability to generate linear and opposite gradients of model molecules (fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) and rhodamine). 3D bioprinting of EBs-laden GelMA was introduced as a novel 3D printing strategy to incorporate EBs in a hydrogel matrix. Cell viability and proliferation were measured post-printing. Following the bioprinting of EBs-laden 5% GelMA hydrogel, neural differentiation of EBs was induced using 1 mu M retinoic acid (RA). The differentiated EBs contained beta III-tubulin positive neurons displaying axonal extensions and cells migration. Finally, 3D bioprinting of EBs-laden PCL/GelMA tubular scaffold successfully supported EBs neural differentiation and patterning in response to co-printing with 1 mu M RA. 3D printing of a complex heterogeneous tubular scaffold that can encapsulate EBs, spatially controlled protein concentration and promote neuronal patterning will help in developing more biomimetic scaffolds capable of replicating the neural patterning which occurs during neural tube development.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] 3D bioprinting of stem cell-laden cardiac patch: A promising alternative for myocardial repair
    Das, Sanskrita
    Nam, Hyoryung
    Jang, Jinah
    APL BIOENGINEERING, 2021, 5 (03)
  • [2] 3D bioprinting of a cell-laden antibacterial polysaccharide hydrogel composite
    Rastin, Hadi
    Ramezanpour, Mahnaz
    Hassan, Kamrul
    Mazinani, Arash
    Tung, Tran Thanh
    Vreugde, Sarah
    Losic, Dusan
    CARBOHYDRATE POLYMERS, 2021, 264
  • [3] 3D bioprinting of cell-laden thermosensitive methylcellulose/nanosilicate composite hydrogels
    Choi, Yun Hyeok
    Yeo, Yong Ho
    Lee, Dongjin
    Park, Su A.
    Park, Won Ho
    CELLULOSE, 2023, 30 (08) : 5093 - 5112
  • [4] 3D bioprinting of cell-laden thermosensitive methylcellulose/nanosilicate composite hydrogels
    Yun Hyeok Choi
    Yong Ho Yeo
    Dongjin Lee
    Su A. Park
    Won Ho Park
    Cellulose, 2023, 30 : 5093 - 5112
  • [5] Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury
    Song, Shaoshuai
    Li, Yuxuan
    Huang, Jie
    Cheng, Shengnan
    Zhang, Zhijun
    BIOMATERIALS ADVANCES, 2023, 148
  • [6] 3D bioprinting of cell-laden constructs for regenerative medicine
    Li C.
    Cui W.
    Engineered Regeneration, 2021, 2 : 195 - 205
  • [7] 3D BIOPRINTING OF VASCULAR NETWORKS IN CELL-LADEN HYDROGEL CONSTRUCTS
    Bova, Lorenzo
    Falcone, Dario
    Kavanaugh, Aaron
    Micheli, Sara
    Zanella, Luca
    Benya, Paul
    Billi, Fabrizio
    Cimetta, Elisa
    TISSUE ENGINEERING PART A, 2022, 28 : S547 - S547
  • [8] 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks
    Rastin, Hadi
    Zhang, Bingyang
    Mazinani, Arash
    Hassan, Kamrul
    Bi, Jingxiu
    Tran Thanh Tung
    Losic, Dusan
    NANOSCALE, 2020, 12 (30) : 16069 - 16080
  • [9] 3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs
    Kolesky, David B.
    Truby, Ryan L.
    Gladman, A. Sydney
    Busbee, Travis A.
    Homan, Kimberly A.
    Lewis, Jennifer A.
    ADVANCED MATERIALS, 2014, 26 (19) : 3124 - 3130
  • [10] 3D Bioprinting of Oxygenated Cell-Laden Gelatin Methacryloyl Constructs
    Erdem, Ahmet
    Darabi, Mohammad Ali
    Nasiri, Rohollah
    Sangabathuni, Sivakoti
    Ertas, Yavuz Nuri
    Alem, Halima
    Hosseini, Vahid
    Shamloo, Amir
    Nasr, Ali S.
    Ahadian, Samad
    Dokmeci, Mehmet R.
    Khademhosseini, Ali
    Ashammakhi, Nureddin
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (15)