Metric Spaces Under Interval Uncertainty: Towards an Adequate Definition

被引:0
|
作者
Afravi, Mahdokht [1 ]
Kreinovich, Vladik [1 ]
Dumrongpokaphoan, Thongchai [2 ]
机构
[1] Univ Texas El Paso, Dept Comp Sci, El Paso, TX 79968 USA
[2] Chiang Mai Univ, Dept Math, Fac Sci, Chiang Mai, Thailand
基金
美国国家科学基金会;
关键词
D O I
10.1007/978-3-319-62434-1_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many practical situations, we only know the bounds on the distances. A natural question is: knowing these bounds, can we check whether there exists a metric whose distance always lies within these bounds - or such a metric is not possible and thus, the bounds are inconsistent. In this paper, we provide an answer to this question. We also describe possible applications of this result to a description of opposite notions in commonsense reasoning.
引用
收藏
页码:219 / 227
页数:9
相关论文
共 50 条
  • [1] Towards efficient prediction of decisions under interval uncertainty
    Huynh, Van Nam
    Kreinovich, Vladik
    Nakamori, Yoshiteru
    Nguyen, Hung T.
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2008, 4967 : 1372 - +
  • [2] TOWARDS THE DEFINITION OF METRIC HYPERBOLICITY
    Vershik, A. M.
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2005, 5 (03) : 721 - 737
  • [3] Completeness properties of interval metric spaces
    Khatun, Rukhsar
    Rahman, Md Sadikur
    Banerjee, Amar Kumar
    Bhunia, Asoke Kumar
    [J]. AFRIKA MATEMATIKA, 2024, 35 (03)
  • [4] DEFINITION AND PROPERTIES OF GENERAL INTERVAL SPACES
    HERZBERGER, J
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1970, 50 (1-4): : T50 - +
  • [5] On Interval-Valued Fuzzy Metric Spaces
    Shen, Yonghong
    Li, Haifeng
    Wang, Faxing
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2012, 14 (01) : 35 - 44
  • [6] Sharp uncertainty principles on metric measure spaces
    Han, Bang-Xian
    Xu, Zhe-Feng
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (04)
  • [7] Towards feasible approach to plan checking under probabilistic uncertainty: Interval methods
    Trejo, R
    Kreinovich, V
    Baral, C
    [J]. SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), 2000, : 545 - 550
  • [8] Towards the Possibility of Objective Interval Uncertainty
    Longpre, Luc
    Kosheleva, Olga
    Kreinovich, Vladik
    [J]. SCIENTIFIC COMPUTING, COMPUTER ARITHMETIC, AND VALIDATED NUMERICS (SCAN 2014), 2016, 9553 : 54 - 65
  • [9] On the definition of probabilistic metric spaces by means of fuzzy measures
    Narukawa, Yasuo
    Taha, Mariam
    Torra, Vicenc
    [J]. FUZZY SETS AND SYSTEMS, 2023, 465
  • [10] Cooperation under interval uncertainty
    S. Zeynep Alparslan-Gök
    Silvia Miquel
    Stef H. Tijs
    [J]. Mathematical Methods of Operations Research, 2009, 69 : 99 - 109