Efficient Context-Guided Stacked Refinement Network for RGB-T Salient Object Detection

被引:71
|
作者
Huo, Fushuo [1 ]
Zhu, Xuegui [1 ]
Zhang, Lei [2 ]
Liu, Qifeng [1 ]
Shu, Yu [1 ]
机构
[1] Chongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
关键词
Feature extraction; Task analysis; Fuses; Object detection; Image segmentation; Semantics; Lighting; Salient object detection; RGB-T; multi-modality; information fusion; FUSION;
D O I
10.1109/TCSVT.2021.3102268
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
RGB-T salient object detection (SOD) aims at utilizing the complementary cues of RGB and Thermal (T) modalities to detect and segment the common objects. However, on one hand, existing methods simply fuse the features of two modalities without fully considering the characters of RGB and T. On the other hand, the high computational cost of existing methods prevents them from real-world applications (e.g., automatic driving, abnormal detection, person re-ID). To this end, we proposed an efficient encoder-decoder network named Context-guided Stacked Refinement Network (CSRNet). Specifically, we utilize a lightweight backbone and design efficient decoder parts, which greatly reduce the computational cost. To fuse RGB and T modalities, we proposed an efficient Context-guided Cross Modality Fusion (CCMF) module to filter the noise and explore the complementation of two modalities. Besides, Stacked Refinement Network (SRN) progressively refines the features from top to down via the interaction of semantic and spatial information. Extensive experiments show that our method performs favorably against state-of-the-art algorithms on RGB-T SOD task while with small model size (4.6M), few FLOPs (4.2G), and real-time speed (38 fps). Our codes is available at: https://github.com/huofushuo/CSRNet.
引用
收藏
页码:3111 / 3124
页数:14
相关论文
共 50 条
  • [1] Weighted Guided Optional Fusion Network for RGB-T Salient Object Detection
    Wang, Jie
    Li, Guoqiang
    Shi, Jie
    Xi, Jinwen
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (05)
  • [2] Interactive context-aware network for RGB-T salient object detection
    Wang, Yuxuan
    Dong, Feng
    Zhu, Jinchao
    Chen, Jianren
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 72153 - 72174
  • [3] CGFNet: Cross-Guided Fusion Network for RGB-T Salient Object Detection
    Wang, Jie
    Song, Kechen
    Bao, Yanqi
    Huang, Liming
    Yan, Yunhui
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 2949 - 2961
  • [4] Edge-guided feature fusion network for RGB-T salient object detection
    Chen, Yuanlin
    Sun, Zengbao
    Yan, Cheng
    Zhao, Ming
    [J]. Frontiers in Neurorobotics, 2024, 18
  • [5] PSNet: Parallel symmetric network for RGB-T salient object detection
    Bi, Hongbo
    Wu, Ranwan
    Liu, Ziqi
    Zhang, Jiayuan
    Zhang, Cong
    Xiang, Tian-Zhu
    Wang, Xiufang
    [J]. NEUROCOMPUTING, 2022, 511 (410-425) : 410 - 425
  • [6] Modal complementary fusion network for RGB-T salient object detection
    Ma, Shuai
    Song, Kechen
    Dong, Hongwen
    Tian, Hongkun
    Yan, Yunhui
    [J]. APPLIED INTELLIGENCE, 2023, 53 (08) : 9038 - 9055
  • [7] SIA: RGB-T salient object detection network with salient-illumination awareness
    Song, Kechen
    Wen, Hongwei
    Ji, Yingying
    Xue, Xiaotong
    Huang, Liming
    Yan, Yunhui
    Meng, Qinggang
    [J]. OPTICS AND LASERS IN ENGINEERING, 2024, 172
  • [8] Modal complementary fusion network for RGB-T salient object detection
    Shuai Ma
    Kechen Song
    Hongwen Dong
    Hongkun Tian
    Yunhui Yan
    [J]. Applied Intelligence, 2023, 53 : 9038 - 9055
  • [9] EDGE-Net: an edge-guided enhanced network for RGB-T salient object detection
    Zheng, Xin
    Wang, Boyang
    Ai, Liefu
    Tang, Pan
    Liu, Deyang
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (06)
  • [10] CGMDRNet: Cross-Guided Modality Difference Reduction Network for RGB-T Salient Object Detection
    Chen, Gang
    Shao, Feng
    Chai, Xiongli
    Chen, Hangwei
    Jiang, Qiuping
    Meng, Xiangchao
    Ho, Yo-Sung
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (09) : 6308 - 6323