The global convergence of augmented Lagrangian methods based on NCP function in constrained nonconvex optimization

被引:4
|
作者
Wu, H. X. [2 ]
Luo, H. Z. [1 ]
Li, S. L. [1 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310032, Zhejiang, Peoples R China
[2] Hangzhou Dianzi Univ, Dept Math, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonconvex optimization; Constrained optimization; Augmented Lagrangian methods; Convergence to KKT point; Degenerate point; ZERO DUALITY GAP; MULTIPLIER METHOD; GENERAL CONSTRAINTS; SADDLE-POINTS; ALGORITHM; CONVEXIFICATION; EXISTENCE;
D O I
10.1016/j.amc.2008.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the global convergence properties of the primal-dual method using a class of augmented Lagrangian functions based on NCP function for inequality constrained nonconvex optimization problems. We construct four modified augmented Lagrangian methods based on different algorithmic strategies. We show that the convergence to a KKT point or a degenerate point of the original problem can be ensured without requiring the boundedness condition of the multiplier sequence. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:124 / 134
页数:11
相关论文
共 50 条
  • [1] ON THE CONVERGENCE OF AUGMENTED LAGRANGIAN METHODS FOR CONSTRAINED GLOBAL OPTIMIZATION
    Luo, H. Z.
    Sun, X. L.
    Li, D.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) : 1209 - 1230
  • [2] Convergence properties of augmented Lagrangian methods for constrained global optimization
    Luo, Hezhi
    Sun, Xiaoling
    Wu, Huixian
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (05): : 763 - 778
  • [3] Convergence of a recurrent neural network for nonconvex optimization based on an augmented lagrangian function
    Hu, Xiaolin
    Wang, Jun
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 3, PROCEEDINGS, 2007, 4493 : 194 - +
  • [4] Global convergence of dislocation hyperbolic augmented Lagrangian algorithm for nonconvex optimization
    Ramirez, Lennin Mallma
    Maculan, Nelson
    Xavier, Adilson Elias
    Xavier, Vinicius Layter
    [J]. OPTIMIZATION, 2024,
  • [5] An Alternating Augmented Lagrangian method for constrained nonconvex optimization
    Galvan, G.
    Lapucci, M.
    Levato, T.
    Sciandrone, M.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (03): : 502 - 520
  • [6] On the Convergence of a Distributed Augmented Lagrangian Method for Nonconvex Optimization
    Chatzipanagiotis, Nikolaos
    Zavlanos, Michael M.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (09) : 4405 - 4420
  • [7] Unified theory of augmented Lagrangian methods for constrained global optimization
    Chang-Yu Wang
    Duan Li
    [J]. Journal of Global Optimization, 2009, 44
  • [8] Unified theory of augmented Lagrangian methods for constrained global optimization
    Wang, Chang-Yu
    Li, Duan
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2009, 44 (03) : 433 - 458
  • [9] Nonconvex Lagrangian-Based Optimization: Monitoring Schemes and Global Convergence
    Bolte, Jerome
    Sabach, Shoham
    Teboulle, Marc
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2018, 43 (04) : 1210 - 1232
  • [10] A novel neural network based on NCP function for solving constrained nonconvex optimization problems
    Effati, Sohrab
    Moghaddas, Mohammad
    [J]. COMPLEXITY, 2016, 21 (06) : 130 - 141