IDENTIFYING DISTINCT SUBGROUPS OF HIGH-NEED, HIGH-COST VETERANS USING MACHINE LEARNING CLUSTERING METHODS

被引:0
|
作者
Parikh, Ravi [1 ,3 ]
Linn, Kristin [4 ]
Yan, Jiali [5 ]
Rosland, Ann-Marie [6 ]
Maciejewski, Matthew [7 ]
Groeneveld, Peter W. [8 ]
Volpp, Kevin G. [2 ]
Navathe, Amol S. [2 ,3 ]
机构
[1] Leonard Davis Inst Hlth Econ, Philadelphia, PA USA
[2] Univ Penn, Perelman Sch Med, Dept Med Eth & Hlth Policy, Philadelphia, PA 19104 USA
[3] Corporal Michel J Cresencz VAMedical Ctr, Philadelphia, PA USA
[4] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[5] Univ Penn, Dept Med, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] Univ Pittsburgh, Sch Med, Pittsburgh, PA USA
[7] Durham VA Med Ctr, Durham, NC USA
[8] Univ Penn, PVAMC, Philadelphia, PA 19104 USA
关键词
D O I
暂无
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
引用
收藏
页码:S155 / S155
页数:1
相关论文
共 50 条
  • [1] Identifying High-Cost, High-Need Patients in a Network of Community Hospitals
    Zdrale, Gabriel
    Essary, Alison
    Bremer, Stephan
    Peng, Wesley
    Chen, Weiqi
    Kalpas, Edward
    [J]. JOURNAL OF PRIMARY CARE AND COMMUNITY HEALTH, 2024, 15
  • [2] Identifying subgroups of high-need, high-cost, chronically ill patients in primary care: A latent class analysis
    Smeets, Rowan G. M.
    Elissen, Arianne M. J.
    Kroese, Marielle E. A. L.
    Hameleers, Niels
    Ruwaard, Dirk
    [J]. PLOS ONE, 2020, 15 (01):
  • [3] A methodology for identifying high-need, high-cost patient personas for international comparisons
    Figueroa, Jose F.
    Horneffer, Kathryn E.
    Riley, Kristen
    Abiona, Olukorede
    Arvin, Mina
    Atsma, Femke
    Bernal-Delgado, Enrique
    Blankart, Carl Rudolf
    Bowden, Nicholas
    Deeny, Sarah
    Estupinan-Romero, Francisco
    Gauld, Robin
    Hansen, Tonya Moen
    Haywood, Philip
    Janlov, Nils
    Knight, Hannah
    Lorenzoni, Luca
    Marino, Alberto
    Or, Zeynep
    Pellet, Leila
    Orlander, Duncan
    Penneau, Anne
    Schoenfeld, Andrew J.
    Shatrov, Kosta
    Skudal, Kjersti Eeg
    Stafford, Mai
    Galien, Onno
    Gool, Kees
    Wodchis, Walter P.
    Tanke, Marit
    Jha, Ashish K.
    Papanicolas, Irene
    [J]. HEALTH SERVICES RESEARCH, 2021, 56 : 1302 - 1316
  • [4] Identifying High-Need, High-Cost Patients: A Real-World Perspective
    Savitz, Lucy A.
    Williams, Kelly Rice
    Swayze, Dan
    [J]. ANNALS OF INTERNAL MEDICINE, 2022, 175 (12) : 1767 - 1768
  • [5] "Precision Health" for High-Need, High-Cost Patients
    Khullar, Dhruv
    Kaushal, Rainu
    [J]. AMERICAN JOURNAL OF MANAGED CARE, 2018, 24 (09): : 396 - 398
  • [6] High-need high-cost patients: A Concept Analysis
    Bilazarian, Ani
    [J]. NURSING FORUM, 2021, 56 (01) : 127 - 133
  • [7] Characterizing Subgroups of High-Need, High-Cost Patients Based on Their Clinical Conditions: a Machine Learning-Based Analysis of Medicaid Claims Data
    Sudhakar V. Nuti
    Patrick Doupe
    Blanca Villanueva
    Joseph Scarpa
    Emilie Bruzelius
    Aaron Baum
    [J]. Journal of General Internal Medicine, 2019, 34 : 1406 - 1408
  • [8] Meeting the Challenge of the High-Need, High-Cost Population
    Jette, Alan M.
    [J]. PHYSICAL THERAPY, 2016, 96 (11): : 1682 - 1683
  • [9] Characterizing Subgroups of High-Need, High-Cost Patients Based on Their Clinical Conditions: a Machine Learning-Based Analysis of Medicaid Claims Data
    Nuti, Sudhakar V.
    Doupe, Patrick
    Villanueva, Blanca
    Scarpa, Joseph
    Bruzelius, Emilie
    Baum, Aaron
    [J]. JOURNAL OF GENERAL INTERNAL MEDICINE, 2019, 34 (08) : 1406 - 1408
  • [10] Identifying High-Need Primary Care Patients Using Nursing Knowledge and Machine Learning Methods
    Hewner, Sharon
    Smith, Erica
    Sullivan, Suzanne S.
    [J]. APPLIED CLINICAL INFORMATICS, 2023, 14 (03): : 408 - 417