Indecomposable decompositions of torsion-free abelian groups

被引:1
|
作者
Mader, Adolf [1 ]
Schultz, Phill [2 ]
机构
[1] Univ Hawaii Manoa, Dept Math, 2565 McCarthy Mall, Honolulu, HI 96822 USA
[2] Univ Western Australia, Sch Math & Stat, Nedlands, WA 6009, Australia
关键词
Torsion-free abelian group; Finite rank; Almost completely decomposable; Cyclic regulator quotient; Block-rigid; Indecomposable decomposition; Realization of partitions;
D O I
10.1016/j.jalgebra.2018.03.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An indecomposable decomposition of a torsion-free abelian group G of rank n is a decomposition G = A(1) circle plus...circle plus A(t) where each A(t) is indecomposable of rank r(i), so that Sigma(i) r(i) = n is a partition of n. The group G may have indecomposable decompositions that result in different partitions of n. We address the problem of characterizing those sets of partitions of n which can arise from indecomposable decompositions of a torsion-free abelian group. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:267 / 296
页数:30
相关论文
共 50 条