ON THE MODELING OF MOVING POPULATIONS THROUGH SET EVOLUTION EQUATIONS

被引:13
|
作者
Colombo, Rinaldo M. [1 ]
Lorenz, Thomas [2 ]
Pogodaev, Nikolay I. [3 ]
机构
[1] Univ Brescia, INdAM Unit, I-25123 Brescia, Italy
[2] RheinMain Univ Appl Sci, D-65197 Wiesbaden, Germany
[3] Inst Syst Dynam & Control Theory, Irkutsk 664033, Russia
基金
俄罗斯基础研究基金会;
关键词
Set evolution equations; differential inclusions; evolution of measures; confinement problems; agents-population interactions; CLOSED BALLS CONJECTURE; CONTROL-SYSTEMS; REACHABLE SETS; METRIC-SPACES; BALANCE LAWS; UNIQUENESS; UNION;
D O I
10.3934/dcds.2015.35.73
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a class of set evolution equations that can be used to describe population's movements as well as various instances of individual-population interactions. Optimal control/management problems can be formalized and tackled in this framework. A rigorous analytical structure is established and the basic well posedness results are obtained. Several examples show possible applications and their numerical integrations display possible qualitative behaviors of solutions.
引用
收藏
页码:73 / 98
页数:26
相关论文
共 50 条
  • [1] On Evolution Equations for Moving Domains
    Prokert, G.
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (01): : 67 - 95
  • [2] An evolution model on the set of the populations of neurons
    Wang, RB
    [J]. ICECS 2003: PROCEEDINGS OF THE 2003 10TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-3, 2003, : 1324 - 1327
  • [3] A dynamic evolution model for the set of populations of neurons
    Wang, RB
    Chen, H
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2003, 4 (03) : 203 - 208
  • [4] Hyperbolic evolution equations for moving boundary problems
    Prokert, G
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1999, 10 : 607 - 622
  • [5] External Ellipsoidal Approximations for Set Evolution Equations
    Steven Duda
    Edeltraud Gehrig
    Thomas Lorenz
    [J]. Journal of Optimization Theory and Applications, 2022, 192 : 759 - 798
  • [6] External Ellipsoidal Approximations for Set Evolution Equations
    Duda, Steven
    Gehrig, Edeltraud
    Lorenz, Thomas
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 192 (03) : 759 - 798
  • [7] Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations
    Tommaso Lorenzi
    Rebecca H. Chisholm
    Jean Clairambault
    [J]. Biology Direct, 11
  • [8] Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations
    Lorenzi, Tommaso
    Chisholm, Rebecca H.
    Clairambault, Jean
    [J]. BIOLOGY DIRECT, 2016, 11
  • [9] Moving across the border: modeling migratory bat populations
    Wiederholt, Ruscena
    Lopez-Hoffman, Laura
    Cline, Jon
    Medellin, Rodrigo A.
    Cryan, Paul
    Russell, Amy
    McCracken, Gary
    Diffendorfer, Jay
    Semmens, Darius
    [J]. ECOSPHERE, 2013, 4 (09):
  • [10] Linear Schrodinger evolution equations with moving Coulomb singularities
    Okazawa, Noboru
    Yoshii, Kentarou
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (07) : 2964 - 2999