Quantum computational advantage using photons

被引:1345
|
作者
Zhong, Han-Sen [1 ,2 ,3 ]
Wang, Hui [1 ,2 ,3 ]
Deng, Yu-Hao [1 ,2 ,3 ]
Chen, Ming-Cheng [1 ,2 ,3 ]
Peng, Li-Chao [1 ,2 ,3 ]
Luo, Yi-Han [1 ,2 ,3 ]
Qin, Jian [1 ,2 ,3 ]
Wu, Dian [1 ,2 ,3 ]
Ding, Xing [1 ,2 ,3 ]
Hu, Yi [1 ,2 ,3 ]
Hu, Peng [4 ]
Yang, Xiao-Yan [4 ]
Zhang, Wei-Jun [4 ]
Li, Hao [4 ]
Li, Yuxuan [5 ,6 ]
Jiang, Xiao [1 ,2 ,3 ]
Gan, Lin [5 ,6 ]
Yang, Guangwen [5 ,6 ]
You, Lixing [4 ]
Wang, Zhen [4 ]
Li, Li [1 ,2 ,3 ]
Liu, Nai-Le [1 ,2 ,3 ]
Lu, Chao-Yang [1 ,2 ,3 ]
Pan, Jian-Wei [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence & Synerget Innovat Ctr Quantum, Shanghai 201315, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[5] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
[6] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
10.1126/science.abe8770
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computers promise to perform certain tasks that are believed to be intractable to classical computers. Boson sampling is such a task and is considered a strong candidate to demonstrate the quantum computational advantage. We performed Gaussian boson sampling by sending 50 indistinguishable single-mode squeezed states into a 100-mode ultralow-loss interferometer with full connectivity and random matrix-the whole optical setup is phase-locked-and sampling the output using 100 high-efficiency single-photon detectors. The obtained samples were validated against plausible hypotheses exploiting thermal states, distinguishable photons, and uniform distribution. The photonic quantum computer, Jiuzhang, generates up to 76 output photon clicks, which yields an output state-space dimension of 10(30) and a sampling rate that is faster than using the state-of-the-art simulation strategy and supercomputers by a factor of similar to 10(14).
引用
收藏
页码:1460 / 1463
页数:4
相关论文
共 50 条
  • [1] Strong Quantum Computational Advantage Using a Superconducting Quantum Processor
    Wu, Yulin
    Bao, Wan-Su
    Cao, Sirui
    Chen, Fusheng
    Chen, Ming-Cheng
    Chen, Xiawei
    Chung, Tung-Hsun
    Deng, Hui
    Du, Yajie
    Fan, Daojin
    Gong, Ming
    Guo, Cheng
    Guo, Chu
    Guo, Shaojun
    Han, Lianchen
    Hong, Linyin
    Huang, He-Liang
    Huo, Yong-Heng
    Li, Liping
    Li, Na
    Li, Shaowei
    Li, Yuan
    Liang, Futian
    Lin, Chun
    Lin, Jin
    Qian, Haoran
    Qiao, Dan
    Rong, Hao
    Su, Hong
    Sun, Lihua
    Wang, Liangyuan
    Wang, Shiyu
    Wu, Dachao
    Xu, Yu
    Yan, Kai
    Yang, Weifeng
    Yang, Yang
    Ye, Yangsen
    Yin, Jianghan
    Ying, Chong
    Yu, Jiale
    Zha, Chen
    Zhang, Cha
    Zhang, Haibin
    Zhang, Kaili
    Zhang, Yiming
    Zhao, Han
    Zhao, Youwei
    Zhou, Liang
    Zhu, Qingling
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (18)
  • [2] Quantum advantage using high-dimensional twisted photons as quantum finite automata
    Plachta, Stephen Z. D.
    Hiekkamaki, Markus
    Yakaryilmaz, Abuzer
    Fickler, Robert
    [J]. QUANTUM, 2022, 6
  • [3] Quantum advantage in biometric authentication with single photons
    Kominis, Iannis K.
    Loulakis, Michail
    [J]. JOURNAL OF APPLIED PHYSICS, 2022, 131 (08)
  • [4] Relation between Quantum Advantage in Supervised Learning and Quantum Computational Advantage
    Pérez-Guijarro J.
    Pagés-Zamora A.
    Fonollosa J.R.
    [J]. IEEE Transactions on Quantum Engineering, 2024, 5 : 1 - 17
  • [5] Computational advantage of quantum random sampling
    Hangleiter, Dominik
    Eisert, Jens
    [J]. REVIEWS OF MODERN PHYSICS, 2023, 95 (03)
  • [6] Resources for Bosonic Quantum Computational Advantage
    Chabaud, Ulysse
    Walschaers, Mattia
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (09)
  • [7] The Computational and Latency Advantage of Quantum Communication Networks
    Ferrara R.
    Bassoli R.
    Deppe C.
    Fitzek F.H.P.
    Boche H.
    [J]. IEEE Communications Magazine, 2021, 59 (06) : 132 - 137
  • [8] Quantum computational advantage with a programmable photonic processor
    Lars S. Madsen
    Fabian Laudenbach
    Mohsen Falamarzi. Askarani
    Fabien Rortais
    Trevor Vincent
    Jacob F. F. Bulmer
    Filippo M. Miatto
    Leonhard Neuhaus
    Lukas G. Helt
    Matthew J. Collins
    Adriana E. Lita
    Thomas Gerrits
    Sae Woo Nam
    Varun D. Vaidya
    Matteo Menotti
    Ish Dhand
    Zachary Vernon
    Nicolás Quesada
    Jonathan Lavoie
    [J]. Nature, 2022, 606 : 75 - 81
  • [9] Quantum computational advantage with a programmable photonic processor
    Madsen, Lars S.
    Laudenbach, Fabian
    Askarani, Mohsen Falamarzi.
    Rortais, Fabien
    Vincent, Trevor
    Bulmer, Jacob F. F.
    Miatto, Filippo M.
    Neuhaus, Leonhard
    Helt, Lukas G.
    Collins, Matthew J.
    Lita, Adriana E.
    Gerrits, Thomas
    Nam, Sae Woo
    Vaidya, Varun D.
    Menotti, Matteo
    Dhand, Ish
    Vernon, Zachary
    Quesada, Nicolas
    Lavoie, Jonathan
    [J]. NATURE, 2022, 606 (7912) : 75 - +
  • [10] Quantum information technology using photons
    Takeuchi, S
    [J]. CLEO(R)/PACIFIC RIM 2001, VOL II, TECHNICAL DIGEST, 2001, : 402 - 403