Synthesis and Electrochemical Performance of Co3O4/Graphene

被引:17
|
作者
Wang Hongzhi [1 ]
Shi Yulei [1 ]
Li Zixuan [1 ]
Zhang Weiguo [1 ]
Yao Suwei [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Dept Appl Chem, Tianjin 300072, Peoples R China
关键词
Cobalt oxide; Graphene; Composite; Electrochemical preparation; Supercapacitor; EXFOLIATED GRAPHITE OXIDE; COBALT OXIDE; CO3O4; NANOPARTICLES; GRAPHENE; DEPOSITION; STORAGE; SUPERCAPACITOR; FABRICATION; COMPOSITE; FACILE;
D O I
10.1007/s40242-014-4109-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Co3O4/reduced graphene oxide composites were synthesized via a simple electrochemical method from graphene oxide and Co(NO3)(2)center dot 6H(2)O as raw materials. Co3O4 nanoparticles with sizes of around 30-50 nm were distributed on the surface of graphene nanosheets confirmed by scanning electron microscopy and transmission electron microscopy. Electrochemical properties of Co3O4/graphene composite were tested by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The Co3O4/reduced graphene oxide composite was used as the pseudocapacitor electrode in the 2 mol/L NaOH aqueous electrolyte solution. The Co3O4/reduced graphene oxide composite electrode exhibited a specific capacitance of 357 F/g at a current density of 0.5 A/g in a three-electrode system 72% of capacitance was retained when the current density increased to 3 A/g. The Co3O4/reduced graphene oxide composite prepared electrodes show a high rate capability and excellent long-term stability. After 1000 cycles of charge and discharge, the capacitance is still maintained 87% at a current density of 1 A/g, indicating that the composite is a promising alternative electrode material used for supercapacitors.
引用
收藏
页码:650 / 655
页数:6
相关论文
共 50 条
  • [1] Synthesis and electrochemical performance of Co3O4/graphene
    Hongzhi Wang
    Yulei Shi
    Zixuan Li
    Weiguo Zhang
    Suwei Yao
    Chemical Research in Chinese Universities, 2014, 30 : 650 - 655
  • [2] Synthesis and electrochemical performance of nanosized Co3O4
    Yuan, ZY
    Huang, F
    Feng, CQ
    Sun, JT
    Zhou, YH
    MATERIALS CHEMISTRY AND PHYSICS, 2003, 79 (01) : 1 - 4
  • [3] Synthesis and Electrochemical Performances of Co3O4/graphene as Supercapacitor Material
    Zhou, Yun-long
    Hu, Zhi-biao
    Zhao, Chen-hao
    Liu, Kai-yu
    Lin, Deng-gao
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (07): : 6078 - 6084
  • [4] Sonochemical synthesis of Co3O4/graphene/Co3O4 sandwich architecture for high-performance supercapacitors
    Xiaoyan Han
    Zhiyong Huang
    Chengen He
    Qing Zhang
    Xiaofang Zhang
    Yingkui Yang
    Journal of Applied Electrochemistry, 2019, 49 : 1133 - 1142
  • [5] Sonochemical synthesis of Co3O4/graphene/Co3O4 sandwich architecture for high-performance supercapacitors
    Han, Xiaoyan
    Huang, Zhiyong
    He, Chengen
    Zhang, Qing
    Zhang, Xiaofang
    Yang, Yingkui
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2019, 49 (11) : 1133 - 1142
  • [6] Rheological phase synthesis and electrochemical performance of Co3O4 for supercapacitors
    J. C. Zhao
    Y. J. Gu
    J. Lou
    B. H. J. Tang
    J. Zheng
    J. L. Xu
    Russian Journal of Electrochemistry, 2013, 49 : 1053 - 1056
  • [7] Synthesis and electrochemical performance of Co3O4 via a coordination method
    Rui Guo
    Renchao Wang
    Zhiyuan Ni
    Xuanwen Liu
    Applied Physics A, 2018, 124
  • [8] Rheological phase synthesis and electrochemical performance of Co3O4 for supercapacitors
    Zhao, J. C.
    Gu, Y. J.
    Lou, J.
    Tang, B. H. J.
    Zheng, J.
    Xu, J. L.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2013, 49 (11) : 1053 - 1056
  • [9] Synthesis and electrochemical performance of Co3O4 via a coordination method
    Guo, Rui
    Wang, Renchao
    Ni, Zhiyuan
    Liu, Xuanwen
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (09):
  • [10] Hydrothermal synthesis and electrochemical performance of Co3O4/reduced graphene oxide nanosheet composites for supercapacitors
    Song, Zhaoxia
    Zhang, Yujuan
    Liu, Wei
    Zhang, Song
    Liu, Guichang
    Chen, Huiying
    Qiu, Jieshan
    ELECTROCHIMICA ACTA, 2013, 112 : 120 - 126