Note on the Markus-Yamabe conjecture for gradient dynamical systems

被引:6
|
作者
Manosas, F.
Peralta-Salas, D. [1 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Teor 2, E-28040 Madrid, Spain
[2] Univ Autonoma Barcelona, Fac Ciencias, Dept Matemat, E-08193 Barcelona, Spain
关键词
global attractor; Markus-Yamabe conjecture; gradient dynamical system;
D O I
10.1016/j.jmaa.2005.09.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let upsilon : R-n -> R-n be a C-1 vector field which has a singular point O and its linearization is asymptotically stable at every point of R-n. We say that the vector field v satisfies the Markus-Yamabe conjecture if the critical point O is a global attractor of the dynamical system x = upsilon(x). In this note we prove that if upsilon is a gradient vector field, i.e. upsilon = del f (f is an element of C-2), then the basin of attraction of the critical point O is the whole R-n, thus implying the Markus-Yamabe conjecture for this class of vector fields. An analogous result for discrete dynamical systems of the form x(m+1) = del f (x(m)) is proved. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:580 / 586
页数:7
相关论文
共 50 条
  • [1] Note on the Markus-Yamabe conjecture for gradient dynamical systems (vol 322, pg 580, 2006)
    Manosas, F.
    Peralta-Salas, D.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 1492 - 1492
  • [2] Markus-Yamabe conjecture for non-autonomous dynamical systems
    Cheban, David
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 202 - 218
  • [3] A polynomial counterexample to the Markus-Yamabe conjecture
    Cima, A
    vandenEssen, A
    Gasull, A
    Hubbers, E
    Manosas, F
    [J]. ADVANCES IN MATHEMATICS, 1997, 131 (02) : 453 - 457
  • [4] On the Frontier Between Kalman Conjecture and Markus-Yamabe Conjecture
    Reichensdorfer, Elias
    Odenthal, Dirk
    Wollherr, Dirk
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (04): : 1309 - 1314
  • [5] An extension to the planar Markus-Yamabe Jacobian conjecture
    Sabatini, Marco
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (80)
  • [6] An extension to the planar Markus-Yamabe Jacobian conjecture
    Sabatini, Marco
    [J]. arXiv, 2021,
  • [7] A spectral dichotomy version of the nonautonomous Markus-Yamabe conjecture
    Castaneda, Alvaro
    Robledo, Gonzalo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (08) : 4544 - 4554
  • [8] THE MARKUS-YAMABE CONJECTURE FOR CONTINUOUS AND DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Zhang, Xiang
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (12) : 5267 - 5274
  • [9] Markus-Yamabe's conjecture for compact gradients in Hilbert spaces
    Bessa, Mario
    Morais, Pedro
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 692 - 700
  • [10] Markus-Yamabe conjecture for planar piecewise linear refracting system
    Jiang, Zhechen
    Li, Shimin
    [J]. NONLINEAR DYNAMICS, 2024,