A multiobjective approach for solving cooperative n-person games

被引:24
|
作者
Maali, Yashar [1 ]
机构
[1] Payam e Noor Univ, Dept Ind Engn, Tehran, Iran
关键词
Game theory; Multiobjective programming; Transmission expansion cost allocation;
D O I
10.1016/j.ijepes.2009.06.021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A linear programming model is introduced to solve cooperative games. The solution is always Pareto optimal. it is based on the idea of the core but instead of requiring rationality for all groups, a multiobjective approach is proposed including the importance weights of the players. A case study illustrates the application of this method. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:608 / 610
页数:3
相关论文
共 50 条
  • [1] A fuzzy approach to cooperative n-person games
    Espin, Rafael
    Fernandez, Eduardo
    Mazcorro, Gustavo
    Lecich, Maria Ines
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 176 (03) : 1735 - 1751
  • [2] A GP approach to solutions for cooperative N-person games
    Zhai, FY
    PROCEEDINGS OF 2003 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, VOLS I AND II, 2003, : 652 - 656
  • [3] COOPERATIVE N-PERSON STACKELBERG GAMES
    BIALAS, WF
    PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, : 2439 - 2444
  • [4] The General Nucleolus of n-Person Cooperative Games
    Kong, Qianqian
    Sun, Hao
    Xu, Genjiu
    GAME THEORY AND APPLICATIONS, 2017, 758 : 201 - 214
  • [5] Analysis of the n-person noncooperative supermodular multiobjective games
    Setiawan, Rubono
    Salmah
    Endrayanto, Irwan
    Indarsih
    OPERATIONS RESEARCH LETTERS, 2023, 51 (03) : 278 - 284
  • [6] The general prenucleolus of n-person cooperative fuzzy games
    Kong, Qianqian
    Sun, Hao
    Xu, Genjiu
    Hou, Dongshuang
    FUZZY SETS AND SYSTEMS, 2018, 349 : 23 - 41
  • [7] COMPETITIVE BARGAINING SET FOR COOPERATIVE N-PERSON GAMES
    HOROWITZ, AD
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1973, 10 (03) : 265 - 289
  • [8] ABOUT NON-COOPERATIVE N-PERSON GAMES
    Zhang yadong and Zhang shengkai(No 1 Baoding St
    经济数学, 1994, (01) : 93 - 99
  • [9] GEOMETRY OF SOLUTION CONCEPTS FOR N-PERSON COOPERATIVE GAMES
    SPINETTO, R
    MANAGEMENT SCIENCE SERIES A-THEORY, 1974, 20 (09): : 1292 - 1299
  • [10] ESSENTIAL NON-COOPERATIVE N-PERSON GAMES
    MALAFEEV, OA
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1978, (01): : 50 - 53