Model calibration/parameter estimation techniques and conceptual model error

被引:6
|
作者
Gaganis, Petros [1 ]
机构
[1] Univ Aegean, Dept Environm, Mitilini 81100, Greece
关键词
model calibration; parameter estimation; conceptual error; model error; inverse method; uncertainty; groundwater modeling; GROUNDWATER-FLOW MODELS; PRIOR INFORMATION; INVERSE PROBLEM; STEADY-STATE; UNCERTAINTY; PARAMETERS; PREDICTIONS; MULTIPLE;
D O I
10.1007/978-90-481-2636-1_6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In a modeling exercise, errors in the model structure cannot be avoided because they arise from our limited capability to exactly describe mathematically the complexity of a physical system. The effect of model error on model predictions is not random but systematic, therefore, it does not necessarily have any probabilistic properties that can be easily exploited in the construction of a model performance criterion. The effect of model error varies in both space and time. It is also different for the flow and the solute transport components of a groundwater model and may have a significant impact on parameter estimation, uncertainty analyses and risk assessments. Structural errors may result in a misleading evaluation of prediction uncertainty associated with parameter error because model sensitivity to uncertain parameters may be quite different than that of the correct model. A substantial model error may significantly degrade the usefulness of model calibration and the reliability of model predictions because parameter estimates are forced to compensate for the existing structural errors. Incorrect uncertainty analyses and estimated parameters that have little value in predictive modeling could potentially lead to an engineering design failure or to a selection of a management strategy that involves unnecessary expenditures. A complementary to classical inverse methods model calibration procedure is presented for assessing the uncertainty in parameter estimates associated with model error. This procedure is based on the concept of a per-datum calibration for capturing the spatial and temporal behavior of model error. A set of per-datum parameter estimates obtained by this new method defines a posterior parameter space that may be translated into a probabilistic description of model predictions. The resulted prediction uncertainty represents a reflection on model predictions of available information regarding the dependent variables and measures the level of confidence in model performance.
引用
收藏
页码:129 / 154
页数:26
相关论文
共 50 条
  • [1] The Model Calibration Protocol for Parameter Estimation of Activated Sludge Model
    Lee, Won-Young
    Kim, Min-Han
    Yoo, Chang Kyoo
    [J]. 2008 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS, VOLS 1-4, 2008, : 2266 - 2271
  • [2] Multi parameter error model and calibration of laser tracker
    Zhang, Hejun
    Ma, Junjie
    Zhang, Jun
    [J]. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2020, 41 (09): : 20 - 30
  • [3] Sensitivity-Based Parameter Calibration and Model Validation Under Model Error
    Qiu, Na
    Park, Chanyoung
    Gao, Yunkai
    Fang, Jianguang
    Sun, Guangyong
    Kim, Nam H.
    [J]. JOURNAL OF MECHANICAL DESIGN, 2018, 140 (01)
  • [4] Parameter estimation techniques for a polarization hysteresis model
    Smith, RC
    Hatch, A
    [J]. SMART STRUCTURES AND MATERIALS 2004: MODELING, SIGNAL PROCESSING, AND CONTROL, 2004, 5383 : 155 - 163
  • [5] A parameter estimation program for the error-in-variable model
    Tang, SZ
    Wang, YH
    [J]. ECOLOGICAL MODELLING, 2002, 156 (2-3) : 225 - 236
  • [6] Multi-model fusion and error parameter estimation
    Logutov, O. G.
    Robinson, A. R.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) : 3397 - 3408
  • [7] Using State Estimation for Parameter and Model Error Identification
    Hwang, M. Davis
    Brewer, Brian
    [J]. IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [8] Parameter estimation methods in covariance model with error in covariate
    de Oliveira, Tiago Almeida
    de Morais, Augusto Ramalho
    Cirillo, Marcelo Angelo
    [J]. CIENCIA RURAL, 2011, 41 (10): : 1851 - 1857
  • [9] Comparing calibration strategies of a conceptual snow hydrology model and their impact on model performance and parameter identifiability
    Nemri, Saida
    Kinnard, Christophe
    [J]. JOURNAL OF HYDROLOGY, 2020, 582
  • [10] Insights on the role of accurate state estimation in coupled model parameter estimation by a conceptual climate model study
    Yu, Xiaolin
    Zhang, Shaoqing
    Lin, Xiaopei
    Li, Mingkui
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2017, 24 (02) : 125 - 139