Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps

被引:67
|
作者
Przytycki, F
Rivera-Letelier, J
Smirnov, S
机构
[1] Polish Acad Sci, Inst Math, PL-00950 Warsaw, Poland
[2] SUNY Stony Brook, Inst Math Sci, Stony Brook, NY 11794 USA
[3] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
D O I
10.1007/s00222-002-0243-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show equivalence of several standard conditions for non-uniform hyperbolicity of complex rational functions, including the Topological Collet-Eckmann condition (TCE), Uniform Hyperbolicity on Periodic orbits, Exponential Shrinking of components of pre-images of small discs, backward Collet-Eckmann condition at one point, positivity of the infimum of Lyapunov exponents of finite invariant measures on the Julia set. The condition TCE is stated in purely topological terms, so we conclude that all these conditions are invariant under topological conjugacy. For rational maps with one critical point in Julia set all the conditions above are equivalent to the usual Collet-Eckmann and backward Collet-Eckmann conditions. Thus the latter ones are invariant by topological conjugacy in the unicritical setting. We also prove that neither part of this stronger statement is valid in the multicritical case.
引用
收藏
页码:29 / 63
页数:35
相关论文
共 50 条