On the mean curvature of spacelike surfaces in certain three-dimensional Robertson-Walker spacetimes and Calabi-Bernstein's type problems

被引:37
|
作者
Romero, Alfonso [1 ]
Rubio, Rafael M. [2 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Univ Cordoba, Dept Matemat, E-14071 Cordoba, Spain
关键词
Mean curvature; Spacelike surface; Robertson-Walker spacetime; Calabi-Bernstein' sproblem; LORENTZ-MINKOWSKI SPACE; MAXIMAL SURFACES; RIEMANNIAN MANIFOLDS; HYPERSURFACES; UNIQUENESS; THEOREM;
D O I
10.1007/s10455-009-9171-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several uniqueness results for the spacelike slices in certain Robertson-Walker spacetimes are proved under boundedness assumptions either on the mean curvature function of the spacelike surface or on the restriction of the time coordinate on the surface when the mean curvature is a constant. In the nonparametric case, a uniqueness result and a nonexistence one are proved for bounded entire solutions of some constant mean curvature spacelike differential equations.
引用
收藏
页码:21 / 31
页数:11
相关论文
共 27 条