LOWER BOUNDS FOR Z-NUMBERS

被引:1
|
作者
Dubickas, Arturas [1 ]
Mossinghoff, Michael J. [2 ]
机构
[1] Vilnius Univ, Dept Math & Informat, LT-03225 Vilnius, Lithuania
[2] Davidson Coll, Dept Math, Davidson, NC 28035 USA
关键词
Z-numbers; distribution mod 1; FRACTIONAL-PARTS; 3X+1 PROBLEM;
D O I
10.1090/S0025-5718-09-02211-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p/q be a rational noninteger number with p > q >= 2. A real number lambda > 0 is a Z(p/q)-number if {lambda(p/q)(n)} < 1/q for every nonnegative integer n, where {x} denotes the fractional part of x. We develop several algorithms to search for Z(p/q)-numbers, and use them to determine lower bounds on such numbers for several p and q. It is shown, for instance, that if there is a Z(3/2)-number, then it is greater than 2(57). We also explore some connections between these problems and some questions regarding iterated maps on integers.
引用
收藏
页码:1837 / 1851
页数:15
相关论文
共 50 条
  • [1] Ordering of Z-numbers
    Mohamad, Daud
    Shaharani, Saidatull Akma
    Kamis, Nor Hanimah
    [J]. PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [2] Applied Z-numbers
    Patel, Purvag
    Rahimi, Shahram
    Khorasani, Elham
    [J]. 2015 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY DIGIPEN NAFIPS 2015, 2015,
  • [3] Z-Numbers and Applications
    Aliev, Rafik
    Kreinovich, Vladik
    Turksen, Burhan
    Bonfig, Karl Walter
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2018, 24 (01): : 145 - 146
  • [4] A Decade of the Z-Numbers
    Banerjee, Romi
    Pal, Sankar K.
    Pal, Jayanta Kumar
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (08) : 2800 - 2812
  • [5] A Note on Z-numbers
    Zadeh, Lotfi A.
    [J]. INFORMATION SCIENCES, 2011, 181 (14) : 2923 - 2932
  • [6] On Ranking of Continuous Z-Numbers with Generalized Centroids and Optimization Problems Based on Z-Numbers
    Qiu, Dong
    Xing, Yumei
    Dong, Rongwen
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2018, 33 (01) : 3 - 14
  • [7] The arithmetic of discrete Z-numbers
    Aliev, R. A.
    Alizadeh, A. V.
    Huseynov, O. H.
    [J]. INFORMATION SCIENCES, 2015, 290 : 134 - 155
  • [8] The arithmetic of continuous Z-numbers
    Aliev, R. A.
    Huseynov, O. H.
    Zeinalova, L. M.
    [J]. INFORMATION SCIENCES, 2016, 373 : 441 - 460
  • [9] A new approach to Zadeh's Z-numbers: Mixed-discrete Z-numbers
    Massanet, Sebastia
    Vicente Riera, Juan
    Torrens, Joan
    [J]. INFORMATION FUSION, 2020, 53 : 35 - 42
  • [10] TODIM and TOPSIS with Z-numbers
    Renato A.KROHLING
    André G.C.PACHECO
    Guilherme A.dos SANTOS
    [J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20 (02) : 283 - 291