The model equivalence based parameter estimation methods for Box-Jenkins systems

被引:12
|
作者
Ding, Feng [1 ]
Meng, Dandan [1 ]
Wang, Qi [1 ]
机构
[1] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Peoples R China
基金
中国国家自然科学基金;
关键词
NONLINEAR-SYSTEMS; ESTIMATION ALGORITHM; ITERATIVE ESTIMATION; STOCHASTIC-SYSTEMS; ERROR SYSTEMS; IDENTIFICATION;
D O I
10.1016/j.jfranklin.2015.08.018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a model equivalence based recursive extended least squares algorithm for output-error autoregressive moving average (i.e., Box-Jenkins) systems. The key is to transform a Box Jenkins system into a controlled autoregressive moving average system by the model equivalent transformation, to estimate the parameters of the new system, and to compute the parameter estimates of the original system by comparing coefficients of polynomials. In order to show advantages of the proposed algorithm, this paper gives an auxiliary model based recursive generalized extended least squares (AM-RGELS) algorithm for comparison. The simulation results indicate that the proposed algorithm can improve the parameter estimation accuracy compared with the AM-RGELS algorithm. (C) 2015 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5473 / 5485
页数:13
相关论文
共 50 条
  • [1] Adaptive strategies for parameter estimation of Box-Jenkins systems
    Raja, Muhammad Asif Zahoor
    Chaudhary, Naveed Ishtiaq
    IET SIGNAL PROCESSING, 2014, 8 (09) : 968 - 980
  • [2] Gradient-based iterative parameter estimation for Box-Jenkins systems
    Wang, Dongqing
    Yang, Guowei
    Ding, Ruifeng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (05) : 1200 - 1208
  • [3] Two-stage parameter estimation algorithms for Box-Jenkins systems
    Ding, Feng
    Duan, Honghong
    IET SIGNAL PROCESSING, 2013, 7 (08) : 646 - 654
  • [4] Performance analysis of the recursive parameter estimation algorithms for multivariable Box-Jenkins systems
    Wang, Xuehai
    Ding, Feng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (10): : 4749 - 4764
  • [5] Gradient-based iterative parameter estimation for Box-Jenkins systems with finite measurement data
    Wang, Dongqing
    Dai, Jiyang
    Ding, Feng
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 239 - 243
  • [6] Parameter identification of Box-Jenkins systems based on the differential evolution algorithm
    Liu, Mengru
    Li, Junhong
    Zong, Tiancheng
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 1557 - 1561
  • [7] Parameter identification of Box-Jenkins systems based on the particle swarm optimization
    Zong, Tiancheng
    Li, Junhong
    Li, Xiao
    Shang, Liangliang
    Zhang, Xiaojiao
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 1696 - 1701
  • [8] Filtered auxiliary model recursive generalized extended parameter estimation methods for Box-Jenkins systems by means of the filtering identification idea
    Ding, Feng
    Xu, Ling
    Zhang, Xiao
    Zhou, Yihong
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (10) : 5510 - 5535
  • [9] A Novel Filtering Based Recursive Estimation Algorithm for Box-Jenkins Systems
    Wang, Xuehai
    Zhu, Fang
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2021, 19 (12) : 3903 - 3913
  • [10] A Novel Filtering Based Recursive Estimation Algorithm for Box-Jenkins Systems
    Xuehai Wang
    Fang Zhu
    International Journal of Control, Automation and Systems, 2021, 19 : 3903 - 3913