The limit theorems for maxima of stationary Gaussian processes with random Index

被引:4
|
作者
Tan, Zhong Quan [1 ]
机构
[1] Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314001, Peoples R China
基金
中国国家自然科学基金;
关键词
Limit theorem; weak convergence; maximum; random index; stationary Gaussian process; EXTREME ORDER-STATISTICS; RANDOM SAMPLE-SIZE; POWER NORMALIZATION; RANDOM NUMBER; ASYMPTOTICS; VARIABLES;
D O I
10.1007/s10114-014-2809-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {X(t), t a parts per thousand yen 0} be a standard (zero-mean, unit-variance) stationary Gaussian process with correlation function r(center dot) and continuous sample paths. In this paper, we consider the maxima M(T) = max{X(t), is not an element of t a [0, T]} with random index T (T) , where T (T) /T converges to a non-degenerate distribution or to a positive random variable in probability, and show that the limit distribution of M(T (T) ) exists under some additional conditions related to the correlation function r(center dot).
引用
收藏
页码:1021 / 1032
页数:12
相关论文
共 50 条