Improving the estimation of genetic distances from Next-Generation Sequencing data

被引:77
|
作者
Vieira, Filipe G. [1 ,2 ]
Lassalle, Florent [3 ]
Korneliussen, Thorfinn S. [1 ,2 ]
Fumagalli, Matteo [3 ]
机构
[1] Univ Copenhagen, Ctr GeoGenet, DK-2100 Copenhagen, Denmark
[2] Univ Copenhagen, Nat Hist Museum Denmark, Evogenom Sect, DK-2100 Copenhagen, Denmark
[3] UCL, UCL Genet Inst, Dept Genet Evolut & Environm, London WC1E 6BT, England
关键词
Bayesian inference; maximum likelihood; phylogenetics; population structure; PHYLOGENY RECONSTRUCTION; POPULATION GENOMICS; ALLELE FREQUENCY; RECOMBINATION; ASSOCIATION; POLYMORPHISM; ADAPTATION; EVOLUTION; INFERENCE; MAP;
D O I
10.1111/bij.12511
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Next-Generation Sequencing (NGS) technologies have revolutionized research in evolutionary biology, by increasing the sequencing speed and reducing the experimental costs. However, sequencing errors are higher than in traditional technologies and, furthermore, many studies rely on low-depth sequencing. Under these circumstances, the use of standard methods for inferring genotypes leads to biased estimates of nucleotide variation, which can bias all downstream analyses. Through simulations, we assessed the bias in estimating genetic distances under several different scenarios. The results indicate that naive methods for assigning individual genotypes greatly overestimate genetic distances. We propose a novel method to estimate genetic distances that is suitable for low-depth NGS data and takes genotype call statistical uncertainty into account. We applied this method to investigate the genetic structure of domesticated and wild strains of rice. We implemented this approach in an open-source software and discuss further directions of phylogenetic analyses within this novel probabilistic framework. (C) 2015 The Linnean Society of London,
引用
收藏
页码:139 / 149
页数:11
相关论文
共 50 条
  • [1] distAngsd: Fast and Accurate Inference of Genetic Distances for Next-Generation Sequencing Data
    Zhao, Lei
    Nielsen, Rasmus
    Korneliussen, Thorfinn Sand
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2022, 39 (06) : 1084 - 1097
  • [2] Quantifying Population Genetic Differentiation from Next-Generation Sequencing Data
    Fumagalli, Matteo
    Vieira, Filipe G.
    Korneliussen, Thorfinn Sand
    Linderoth, Tyler
    Huerta-Sanchez, Emilia
    Albrechtsen, Anders
    Nielsen, Rasmus
    [J]. GENETICS, 2013, 195 (03) : 979 - +
  • [3] Discovering genetic polymorphisms in next-generation sequencing data
    Imelfort, Michael
    Duran, Chris
    Batley, Jacqueline
    Edwards, David
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2009, 7 (04) : 312 - 317
  • [4] NGSNGS: next-generation simulator for next-generation sequencing data
    Henriksen, Rasmus Amund
    Zhao, Lei
    Korneliussen, Thorfinn Sand
    [J]. BIOINFORMATICS, 2023, 39 (01)
  • [5] ConPADE: Genome Assembly Ploidy Estimation from Next-Generation Sequencing Data
    Margarido, Gabriel R. A.
    Heckerman, David
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (04)
  • [6] Next-generation sequencing in genetic diagnostics
    Biskup, Saskia
    [J]. LABORATORIUMSMEDIZIN-JOURNAL OF LABORATORY MEDICINE, 2010, 34 (06): : 305 - 309
  • [7] Indexing Next-Generation Sequencing data
    Jalili, Vahid
    Matteucci, Matteo
    Masseroli, Marco
    Ceri, Stefano
    [J]. INFORMATION SCIENCES, 2017, 384 : 90 - 109
  • [8] ShoRAH: estimating the genetic diversity of a mixed sample from next-generation sequencing data
    Osvaldo Zagordi
    Arnab Bhattacharya
    Nicholas Eriksson
    Niko Beerenwinkel
    [J]. BMC Bioinformatics, 12
  • [9] ShoRAH: estimating the genetic diversity of a mixed sample from next-generation sequencing data
    Zagordi, Osvaldo
    Bhattacharya, Arnab
    Eriksson, Nicholas
    Beerenwinkel, Niko
    [J]. BMC BIOINFORMATICS, 2011, 12
  • [10] Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data
    Beerenwinkel, Niko
    Guenthard, Huldrych F.
    Roth, Volker
    Metzner, Karin J.
    [J]. FRONTIERS IN MICROBIOLOGY, 2012, 3