Residual Z2 X Z2 symmetries and lepton mixing

被引:23
|
作者
Lavoura, L. [1 ]
Ludl, P. O. [2 ]
机构
[1] Univ Lisbon, Inst Super Tecn, CFTP, P-1049001 Lisbon, Portugal
[2] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1016/j.physletb.2014.03.001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider two novel scenarios of residual symmetries of the lepton mass matrices. Firstly we assume a Z(2) X Z(2) symmetry G(l) for the charged-lepton mass matrix and a Z(2) symmetry G(v) for the light neutrino mass matrix. With this setting, the moduli of the elements of one column of the lepton mixing matrix are fixed up to a reordering. One may interchange the roles of G(l) and G(v) in this scenario, thereby constraining a row, instead of a column, of the mixing matrix. Secondly we assume a residual symmetry group G(l congruent to) Zm (m>2) which is generated by a matrix with a doubly-degenerate eigenvalue. Then, with G congruent to Z(2) X Z(2) the moduli of the elements of a row of the lepton mixing matrix get fixed. Using the library of small groups we have performed a search for groups which may embed G(l) and G(v) in each of these two scenarios. We have found only two phenomenologically viable possibilities, one of them constraining a column and the other one a row of the mixing matrix. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
引用
收藏
页码:331 / 336
页数:6
相关论文
共 50 条
  • [1] Minimal extension of tribimaximal mixing and generalized Z2 x Z2 symmetries
    Gupta, Shivani
    Joshipura, Anjan S.
    Patel, Ketan M.
    [J]. PHYSICAL REVIEW D, 2012, 85 (03):
  • [2] A Z2 x Z2 standard model
    Blaszczyk, Michael
    Nibbelink, Stefan Groot
    Ratz, Michael
    Ruehle, Fabian
    Trapletti, Michele
    Vaudrevange, Patrick K. S.
    [J]. PHYSICS LETTERS B, 2010, 683 (4-5) : 340 - 348
  • [3] Tribimaximal lepton mixing with A4x(Z2)3
    Morisi, Stefano
    [J]. PHYSICAL REVIEW D, 2009, 79 (03):
  • [4] Quark-lepton mass matrices with U(1) x Z2 x Z2' flavor symmetry
    Tanimoto, M
    [J]. PHYSICS LETTERS B, 1999, 456 (2-4) : 220 - 231
  • [5] Designing Z2 and Z2 x Z2 topological orders in networks of Majorana bound states
    Mohammadi, Fatemeh
    Kargarian, Mehdi
    [J]. PHYSICAL REVIEW B, 2022, 105 (16)
  • [6] Chaotic behavior in a Z2 x Z2 field theory
    Latora, V
    Bazeia, D
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (31): : 4967 - 4984
  • [7] Z2 x Z2 codes and vertex operator algebras
    Lam, CH
    Yamada, H
    [J]. JOURNAL OF ALGEBRA, 2000, 224 (02) : 268 - 291
  • [8] On the number of chiral generations in Z2 X Z2 orbifolds
    Donagi, R
    Faraggi, AE
    [J]. NUCLEAR PHYSICS B, 2004, 694 (1-2) : 187 - 205
  • [9] A Z2 x Z2 orientifold with spontaneously broken supersymmetry
    Cotrone, AL
    [J]. MODERN PHYSICS LETTERS A, 1999, 14 (36) : 2487 - 2497
  • [10] REPRESENTATIONS OF Z2 X Z2 GROUP IN FIELD OF CHARACTERISTIC 2
    BASHEV, VA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1961, 141 (05): : 1015 - &