The five modes of heat generation in a Li-ion cell under discharge

被引:30
|
作者
Srinivasan, Rengaswamy [1 ]
Baisden, A. Carson [1 ]
Carkhuff, Bliss G. [1 ]
Butler, Michael H. [1 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
关键词
Li-ion cell; In situ tracking of thermal runaway; Noninvasive sensors; Resistive heating; Entropy-generated heating; THERMAL-BEHAVIOR; ENTROPY CHANGES; LITHIUM; BATTERIES; TEMPERATURE; CATHODES; ANODES;
D O I
10.1016/j.jpowsour.2014.03.062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A lithium-ion cell under discharge generates thermal energy (Q) through five different internal parameters or modes: the electrolyte resistance (R-s), anode resistance (R-a), cathode resistance (R-c), and entropy changes in the cathode (Delta S-c), and the anode (Delta S-a). This work demonstrates a set of tools to measure/quantify the heat generated by each parameter separately during discharge. These five sources are not dependent upon each other; they are dependent on the state of charge and the environmental temperature (T-env). The Q generated by each mode varies with degree of discharge and T-env. R-s generates most of the Q in the -10 degrees C to 40 degrees C range; R-c becomes significant at T-env <20 degrees C. Constant current discharge does not cause a monotonic increase in anode and cathode temperatures (T-a and T-c), due to the direction of change in Delta S-c and Delta S-a. Negative change in Delta S-a for the carbon anode cools it, causing the T-a to level off and even decrease with increased discharge. Delta S-c for lithium manganese oxide cathode is positive at some SoC and negative at others, preventing a monotonic increase in T-c. Measuring the five Qs separately opens the opportunity to study thermal-runaway from the perspective of the anode, cathode and electrolyte. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 103
页数:11
相关论文
共 50 条
  • [1] Heat Generation in Li-ion Cells during Charge and Discharge
    Srinivasan, Rengaswamy
    Carkhuff, Bliss G.
    Baisden, A. Carson
    Butler, Michael H.
    ENERGY HARVESTING AND STORAGE: MATERIALS, DEVICES, AND APPLICATIONS IV, 2013, 8728
  • [2] The effect of battery design parameters on heat generation and utilization in a Li-ion cell
    Wu, Wei
    Xiao, Xinran
    Huang, Xiaosong
    ELECTROCHIMICA ACTA, 2012, 83 : 227 - 240
  • [3] New Experimental Approach for the Determination of the Heat Generation in a Li-Ion Battery Cell
    Christen, Rouven
    Martin, Bjoern
    Rizzo, Gerhard
    ENERGIES, 2021, 14 (21)
  • [4] Measurements of heat generation in prismatic Li-ion batteries
    Chen, Kaiwei
    Unsworth, Grant
    Li, Xianguo
    JOURNAL OF POWER SOURCES, 2014, 261 : 28 - 37
  • [5] A CFD Modeling of Heat Generation and Charge-Discharge Behavior of a Li-ion Secondary Battery
    Kang, Hyeji
    Park, Hongbeom
    Han, Kyoungho
    Yoon, Do Young
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2016, 19 (03): : 114 - 121
  • [6] Impedance changes of the Li-ion cell in the course of discharge
    Krivik, Petr
    MONATSHEFTE FUR CHEMIE, 2024, 155 (3-4): : 237 - 243
  • [7] Impedance changes of the Li-ion cell in the course of discharge
    Petr Křivík
    Monatshefte für Chemie - Chemical Monthly, 2024, 155 : 237 - 243
  • [8] A Li-Ion Battery Discharge Model
    Chen, Liang-Rui
    Liu, Chuan-Sheng
    INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE, 2010, 5 (04): : 1769 - 1774
  • [9] Heat generation and a conservation law for chemical energy in Li-ion batteries
    Richardson, G.
    Korotkin, I
    ELECTROCHIMICA ACTA, 2021, 392
  • [10] Kalman filter for noise reduction of Li-Ion cell discharge current
    dos Santos, Paulo Lopes
    Perdicoulis, T-P Azevedo
    Salgado, Paulo A.
    Azevedo, Jose Carlos
    IFAC PAPERSONLINE, 2023, 56 (02): : 9582 - 9587