Auditory-based Subband Blind Source Separation using Sample-by-Sample and Infomax Algorithms

被引:0
|
作者
Ben Salem, Abderraouf [1 ]
Selouani, Sid-Ahmed [2 ]
Hamam, Habib [3 ]
机构
[1] Canadian Univ Dubai, Dubai, U Arab Emirates
[2] Univ Moncton, Moncton, NB E8S 1P6, Canada
[3] Univ Moncton, Moncton, NB E1A 3E9, Canada
关键词
blind source separation; subband decomposition; ear model; convolutive sources; Infomax algorithm; CONVOLUTIVE MIXTURES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new subband decomposition method for the separation of convolutive mixtures of speech. This method uses a sample-by-sample algorithm to perform the subband decomposition by mimicking the processing performed by the human ear. The unknown source signals are separated by maximizing the entropy of a transformed set of signal mixtures through the use of a gradient ascent algorithm. Experimental results show the efficiency of the proposed approach in terms of signal-to-interference ratio. Compared with the fullband method that uses the Infomax algorithm, our method shows an important improvement of the output signal-to-noise ratio when the sensor inputs are severely degraded by additive noise.
引用
收藏
页码:651 / 655
页数:5
相关论文
共 50 条
  • [1] Sample-by-sample and block-adaptive robust constant modulus-based algorithms
    Elnashar, A.
    Elnoubi, S.
    Elmikati, H.
    [J]. IET SIGNAL PROCESSING, 2012, 6 (08) : 805 - 813
  • [2] Adaptive Subband Forward Blind Source Separation Algorithms Based on Kalman Mechanism
    Ye, Jianhong
    Yu, Yi
    Zakharov, Yuriy
    Liu, Zhigang
    He, Hongsen
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [3] A new auditory-based index to evaluate the blind separation performance of acoustic mixtures
    Sanchis, JM
    Rieta, JJ
    Castells, F
    Millet, J
    [J]. INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 1118 - 1125
  • [4] Blind source separation from hybrid mixture based on nonlinear InfoMax approach
    Yang, LX
    Lu, ZY
    He, ZY
    Cheung, J
    [J]. ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 3: ANALOG AND DIGITAL SIGNAL PROCESSING, 1999, : 191 - 194
  • [5] Subband based blind source separation for convolutive mixtures of speech
    Araki, S
    Makino, S
    Aichner, R
    Nishikawa, T
    Saruwatari, H
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO AND ELECTROACOUSTICS MULTIMEDIA SIGNAL PROCESSING, 2003, : 509 - 512
  • [6] Removal of Artifacts in Electroencephalogram Using Adaptive Infomax Algorithm of Blind Source Separation
    Guo, Wanyou
    Huang, Liyu
    Gao, Li
    Zhu, Tianqiao
    Huang, Yuangui
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2008, 5227 : 717 - +
  • [7] Monaural Auditory-Based Unvoiced Speech Segregation Using SNR-Based Subband Spectral Subtraction
    Geravanchizadeh, Masoud
    Dadvar, Paria
    [J]. ACTA ACUSTICA UNITED WITH ACUSTICA, 2014, 100 (02) : 353 - 361
  • [9] New method for signal encryption using blind source separation based on subband decomposition
    Yang, Zuyuan
    Zhou, Guoxu
    Wu, Zongze
    Zhang, Jinlong
    [J]. PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2008, 18 (06) : 751 - 755
  • [10] Blind source-separation in mixed-signal VLSI using the InfoMax algorithm
    Valenzuela, Waldo
    Carvajal, Gonzalo
    Figueroa, Miguel
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT II, 2008, 5164 : 208 - 217