MOST: Mobile Broadband Network Optimization Using Planned Spatio-Temporal Events

被引:0
|
作者
Samulevicius, Saulius [1 ]
Pedersen, Torben Bach [1 ]
Sorensen, Troels Bundgaard [2 ]
机构
[1] Aalborg Univ, Dept Comp Sci, Aalborg, Denmark
[2] Aalborg Univ, Dept Elect Syst, Aalborg, Denmark
关键词
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Continuous optimization of Mobile Broadband Networks (MBNs) is done to simultaneously optimize and balance some performance factors such as Quality of Service (QoS) and energy usage. Initial MBN optimization approaches used various heuristics, while more advanced approaches have investigated the MBN optimization potential using predictions of future node loads based on historical load data. However, using only historical load data for prediction often fails when events occur. This paper presents MOST (Mobile broadband network Optimization using planned Spatio-Temporal events) approach that additionally uses external spatio-temporal information about planned events, e.g., the time and place of big concerts or football matches, to improve the prediction quality, thus enabling more correct MBN optimization. A simulation using experimental data from a mobile broadband network in Denmark shows that MOST is able to improve the prediction quality very significantly, and thus enables significantly better MBN optimizations to be performed.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Spatio-Temporal Ensemble Prediction on Mobile Broadband Network Data
    Samulevicius, Saulius
    Pitarch, Yoann
    Pedersen, Torben Bach
    Sorensen, Troels Bundgaard
    [J]. 2013 IEEE 77TH VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2013,
  • [2] Forecasting of mobile network traffic and spatio-temporal analysis using modLSTM
    Aski, Vidyadhar J.
    Chavan, Rugved Sanjay
    Dhaka, Vijaypal Singh
    Rani, Geeta
    Zumpano, Ester
    Vocaturo, Eugenio
    [J]. MACHINE LEARNING, 2024, 113 (04) : 2277 - 2300
  • [3] Social network discovery by mining spatio-temporal events
    Lauw H.W.
    Lim E.-P.
    Pang H.
    Tan T.-T.
    [J]. Computational & Mathematical Organization Theory, 2005, 11 (2): : 97 - 118
  • [4] Network Analysis Using Spatio-Temporal Patterns
    Miranda, Gisele H. B.
    Machicao, Jeaneth
    Bruno, Odemir M.
    [J]. 5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2016), 2016, 738
  • [5] Spatio-temporal Factorization of Log Data for Understanding Network Events
    Kimura, Tatsuaki
    Ishibashi, Keisuke
    Mori, Tatsuya
    Sawada, Hiroshi
    Toyono, Tsuyoshi
    Nishimatsu, Ken
    Watanabe, Akio
    Shimoda, Akihiro
    Shiomoto, Kohei
    [J]. 2014 PROCEEDINGS IEEE INFOCOM, 2014, : 610 - 618
  • [6] Tracking and Modeling of Spatio-Temporal Fields with a Mobile Sensor Network
    Lu, Bowen
    Gu, Dongbing
    Hu, Huosheng
    [J]. 2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 2711 - 2716
  • [7] The Complex Convolutional Neural Network for Adaptive Spatio-Temporal Broadband Beamforming
    Wu, Xun
    Xue, Cong
    Zhang, Shurui
    Zhu, Hairui
    Han, Yubing
    Sheng, Weixing
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 10778 - 10782
  • [8] US broadband policy and the spatio-temporal evolution of broadband markets
    Mack, Elizabeth A.
    Grubesic, Tony H.
    [J]. REGIONAL SCIENCE POLICY AND PRACTICE, 2014, 6 (03): : 291 - +
  • [9] Early classification of spatio-temporal events using partial information
    Kandanaarachchi, Sevvandi
    Hyndman, Rob J.
    Smith-Miles, Kate
    [J]. PLOS ONE, 2020, 15 (08):
  • [10] Spatio-Temporal Attention Network for Persistent Monitoring of Multiple Mobile Targets
    Wang, Yizhuo
    Wang, Yutong
    Cao, Yuhong
    Sartoretti, Guillaume
    [J]. 2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 3903 - 3910