Mining the Ovarian Cancer Ascites Proteome for Potential Ovarian Cancer Biomarkers

被引:92
|
作者
Kuk, Cynthia [1 ,2 ]
Kulasingam, Vathany [1 ,2 ]
Gunawardana, C. Geeth [1 ,2 ]
Smith, Chris R. [3 ]
Batruch, Ihor [3 ]
Diamandis, Eleftherios P. [1 ,2 ,3 ]
机构
[1] Univ Toronto, Dept Lab Med & Pathobiol, Toronto, ON M5G 1L5, Canada
[2] Mt Sinai Hosp, Dept Pathol & Lab Med, Toronto, ON M5T 3L9, Canada
[3] Univ Hlth Network, Dept Clin Biochem, Toronto, ON M5G 2C4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PLASMINOGEN-ACTIVATOR RECEPTOR; HUMAN PLASMA PROTEOME; STATISTICAL-MODEL; TISSUE INHIBITORS; MALIGNANT ASCITES; LARGE-SCALE; SERUM; DIAGNOSIS; MARKERS; FLUID;
D O I
10.1074/mcp.M800313-MCP200
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Current ovarian cancer biomarkers are inadequate because of their relatively low diagnostic sensitivity and specificity. There is a need to discover and validate novel ovarian cancer biomarkers that are suitable for early diagnosis, monitoring, and prediction of therapeutic response. We performed an in-depth proteomics analysis of ovarian cancer ascites fluid. Size exclusion chromatography and ultrafiltration were used to remove high abundance proteins with molecular mass >= 30 kDa. After trypsin digestion, the subproteome (<= 30 kDa) of ascites fluid was determined by two-dimensional liquid chromatography-tandem mass spectrometry. Filtering criteria were used to select potential ovarian cancer biomarker candidates. By combining data from different size exclusion and ultrafiltration fractionation protocols, we identified 445 proteins from the soluble ascites fraction using a two-dimensional linear ion trap mass spectrometer. Among these were 25 proteins previously identified as ovarian cancer biomarkers. After applying a set of filtering criteria to reduce the number of potential biomarker candidates, we identified 52 proteins for which further clinical validation is warranted. Our proteomics approach for discovering novel ovarian cancer biomarkers appears to be highly efficient because it was able to identify 25 known biomarkers and 52 new candidate biomarkers that warrant further validation. Molecular & Cellular Proteomics 8:661-669, 2009.
引用
收藏
页码:661 / 669
页数:9
相关论文
共 50 条
  • [1] Tumor pleural effusion proteome profiling for ovarian cancer biomarkers mining
    V. E. Shevchenko
    D. E. Makarov
    S. V. Kovalev
    N. E. Arnotskaya
    N. R. Pogosian
    K. I. Zhordania
    Journal of Analytical Chemistry, 2013, 68 : 1104 - 1110
  • [2] Tumor Pleural Effusion Proteome Profiling for Ovarian Cancer Biomarkers Mining
    Shevchenko, V. E.
    Makarov, D. E.
    Kovalev, S. V.
    Arnotskaya, N. E.
    Pogosian, N. R.
    Zhordania, K. I.
    JOURNAL OF ANALYTICAL CHEMISTRY, 2013, 68 (13) : 1104 - 1110
  • [3] Mining the malignant ascites proteome for pancreatic cancer biomarkers
    Kosanam, Hari
    Makawita, Shalini
    Judd, Bramford
    Newman, Alice
    Diamandis, Eleftherios P.
    PROTEOMICS, 2011, 11 (23) : 4551 - 4558
  • [4] Ascites-Derived Extracellular microRNAs as Potential Biomarkers for Ovarian Cancer
    Luděk Záveský
    Eva Jandáková
    Vít Weinberger
    Luboš Minář
    Veronika Hanzíková
    Daniela Dušková
    Lenka Záveská Drábková
    Iveta Svobodová
    Aleš Hořínek
    Reproductive Sciences, 2019, 26 : 510 - 522
  • [5] Potential Biomarkers for Ovarian Cancer
    Maria Rosa Maduro
    Reproductive Sciences, 2019, 26 : 449 - 449
  • [6] Potential Biomarkers for Ovarian Cancer
    Maduro, Maria Rosa
    REPRODUCTIVE SCIENCES, 2019, 26 (04) : 449 - 449
  • [7] Ascites-Derived Extracellular microRNAs as Potential Biomarkers for Ovarian Cancer
    Zavesky, Ludek
    Jandakova, Eva
    Weinberger, Vit
    Minar, Lubos
    Hanzikova, Veronika
    Duskova, Daniela
    Zaveska Drabkova, Lenka
    Svobodova, Iveta
    Horinek, Ales
    REPRODUCTIVE SCIENCES, 2019, 26 (04) : 510 - 522
  • [8] Potential biomarkers for ovarian cancer
    Xu, Guoxiong
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2013, 32 : S44 - S44
  • [9] A proteome resource of ovarian cancer ascites: Integrated proteomic and bioinformatic analyses to identify putative biomarkers
    Gortzak-Uzan, Limor
    Ignatchenko, Alex
    Evangelou, Andreas I.
    Agochiya, Mahima
    Brown, Kevin A.
    Onge, Peter St.
    Kireeva, Inga
    Schmitt-Ulms, Gerold
    Brown, Theodore J.
    Murphy, Joan
    Rosen, Barry
    Shaw, Patricia
    Jurisica, Igor
    Kislinger, Thomas
    JOURNAL OF PROTEOME RESEARCH, 2008, 7 (01) : 339 - 351
  • [10] Lysophospholipids are potential biomarkers of ovarian cancer
    Sutphen, R
    Xu, Y
    Wilbanks, GD
    Fiorica, J
    Grendys, EC
    LaPolla, JP
    Arango, H
    Hoffman, MS
    Martino, M
    Wakeley, K
    Griffin, D
    Blanco, RW
    Cantor, AB
    Xiao, YJ
    Krischer, JP
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2004, 13 (07) : 1185 - +