Bivariate Classification of Malware in Java']JavaScript using Dynamic Analysis

被引:0
|
作者
Gupta, Yash [1 ]
Bansal, Divya [1 ]
Sofat, Sanjeev [1 ]
机构
[1] PEC Univ Technol, Chandigarh, India
关键词
malicious [!text type='Java']Java[!/text]Script; dynamic analysis; classification; caffeine monkey;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
JavaScript is used as an attack vector to infect webpages to gain access to user's information. We present a tool that will dynamically analyze and perform bivariate classification of webpages as malicious or benign. We categorized the general behavior of JavaScript using datasets of known benign and malicious JavaScript by using a classifier which is trained on the basis of difference between function calls made by malicious and benign JavaScript and identification of Iframe tag in them. A Script is then matched to those categorizations to classify its behavior as malicious or benign. Here we have developed a light weight malicious JavaScript detection approach which can be used in real time as most of the existing techniques perform offline analysis.
引用
收藏
页码:178 / 182
页数:5
相关论文
共 50 条
  • [1] Dynamic Analysis Using Java']JavaScript Proxies
    Christophe, Laurent
    De Roover, Coen
    De Meuter, Wolfgang
    [J]. 2015 IEEE/ACM 37TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, VOL 2, 2015, : 813 - 814
  • [2] Advanced Transcriptase for Java']JavaScript Malware
    Di Troia, Fabio
    Visaggio, Corrado Aaron
    Austin, Thomas H.
    Stamp, Mark
    [J]. 2016 11TH INTERNATIONAL CONFERENCE ON MALICIOUS AND UNWANTED SOFTWARE (MALWARE), 2016, : 121 - 128
  • [3] Hunting for metamorphic Java']JavaScript malware
    Musale, Mangesh
    Austin, Thomas H.
    Stamp, Mark
    [J]. JOURNAL IN COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2015, 11 (02): : 89 - 102
  • [4] Dynamic Flow Analysis for Java']JavaScript
    Naus, Nico
    Thiemann, Peter
    [J]. TRENDS IN FUNCTIONAL PROGRAMMING (TFP 2016), 2019, 10447 : 75 - 93
  • [5] Efficient Dynamic Access Analysis Using Java']JavaScript Proxies
    Keil, Matthias
    Thiemann, Peter
    [J]. ACM SIGPLAN NOTICES, 2014, 49 (02) : 49 - 60
  • [6] A Systematic Literature Review and Quality Analysis of Java']Javascript Malware Detection
    Sohan, Md. Fahimuzzman
    Basalamah, Anas
    [J]. IEEE ACCESS, 2020, 8 : 190539 - 190552
  • [7] An Analysis of the Dynamic Behavior of Java']JavaScript Programs
    Richards, Gregor
    Lebresne, Sylvain
    Burg, Brian
    Vitek, Jan
    [J]. ACM SIGPLAN NOTICES, 2010, 45 (06) : 1 - 12
  • [8] Next-generation antivirus for Java']JavaScript malware detection based on dynamic features
    de Lima, Sidney M. L.
    Souza, Danilo M.
    Pinheiro, Ricardo P.
    Silva, Sthefano H. M. T.
    Lopes, Petronio G.
    de Lima, Rafael D. T.
    de Oliveira, Jemerson R.
    Monteiro, Thyago de A.
    Fernandes, Sergio M. M.
    Albuquerque, Edison de Q.
    da Silva, Washington W. A.
    dos Santos, Wellington P.
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (02) : 1337 - 1370
  • [9] Is eval () Evil : A study of Java']JavaScript in PDF malware
    Lemay, Antoine
    Leblanc, Sylvain P.
    [J]. PROCEEDINGS OF THE 2018 13TH INTERNATIONAL CONFERENCE ON MALICIOUS AND UNWANTED SOFTWARE (MALWARE 2018), 2018, : 13 - 22
  • [10] AUGUR: Dynamic Taint Analysis for Asynchronous Java']JavaScript
    Aldrich, Mark W.
    Turcotte, Alexi
    Blanco, Matthew
    Tip, Frank
    [J]. PROCEEDINGS OF THE 37TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, ASE 2022, 2022,