First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries

被引:162
|
作者
London, Lionel [1 ]
Khan, Sebastian [2 ,3 ]
Fauchon-Jones, Edward [1 ]
Garcia, Cecilio [4 ,5 ]
Hannam, Mark [1 ]
Husa, Sascha [4 ,5 ]
Jimenez-Forteza, Xisco [4 ,5 ]
Kalaghatgi, Chinmay [1 ]
Ohme, Frank [2 ,3 ]
Pannarale, Francesco [1 ]
机构
[1] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales
[2] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Callinstr 38, D-30167 Hannover, Germany
[3] Leibniz Univ Hannover, Inst Gravitat Phys, Callinstr 38, D-30167 Hannover, Germany
[4] Univ Illes Balears, Dept Fis, Carretera Valldemossa Km 7-5, E-07122 Palma De Mallorca, Spain
[5] Inst Estudis Espacials Catalunya, Carretera Valldemossa Km 7-5, E-07122 Palma De Mallorca, Spain
基金
欧洲研究理事会; 英国科学技术设施理事会;
关键词
D O I
10.1103/PhysRevLett.120.161102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (l = 2, vertical bar m vertical bar = 2) of the radiation during inspiral, merger, and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and resealed using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the nonprecessing PhenomD model. The result, PhenoraHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and currently includes the (l,vertical bar m vertical bar (2,2), (3,3), (4,4), (2,1), (3,2),(4,3) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Including mode mixing in a higher-multipole model for gravitational waveforms from nonspinning black-hole binaries
    Mehta, Ajit Kumar
    Tiwari, Praveer
    Johnson-McDaniel, Nathan K.
    Mishra, Chandra Kant
    Varma, Vijay
    Ajith, Parameswaran
    [J]. PHYSICAL REVIEW D, 2019, 100 (02)
  • [3] Gravitational waves from coalescing black hole macho binaries
    Nakamura, T
    Sasaki, M
    Tanaka, T
    Thorne, KS
    [J]. ASTROPHYSICAL JOURNAL, 1997, 487 (02): : L139 - L142
  • [4] Localizing coalescing massive black hole binaries with gravitational waves
    Lang, Ryan N.
    Hughes, Scott A.
    [J]. ASTROPHYSICAL JOURNAL, 2008, 677 (02): : 1184 - 1200
  • [5] Black-hole binaries, gravitational waves, and numerical relativity
    Centrella, Joan
    Baker, John G.
    Kelly, Bernard J.
    van Meter, James R.
    [J]. REVIEWS OF MODERN PHYSICS, 2010, 82 (04) : 3069 - 3119
  • [6] Model of gravitational waves from precessing black-hole binaries through merger and ringdown
    Hamilton, Eleanor
    London, Lionel
    Thompson, Jonathan E.
    Fauchon-Jones, Edward
    Hannam, Mark
    Kalaghatgi, Chinmay
    Khan, Sebastian
    Pannarale, Francesco
    Vano-Vinuales, Alex
    [J]. PHYSICAL REVIEW D, 2021, 104 (12)
  • [7] New effective-one-body description of coalescing nonprecessing spinning black-hole binaries
    Damour, Thibault
    Nagar, Alessandro
    [J]. PHYSICAL REVIEW D, 2014, 90 (04):
  • [8] Statistical studies of spinning black-hole binaries
    Lousto, Carlos O.
    Nakano, Hiroyuki
    Zlochower, Yosef
    Campanelli, Manuela
    [J]. PHYSICAL REVIEW D, 2010, 81 (08):
  • [9] Modelling gravitational waves from precessing black-hole binaries: progress, challenges and prospects
    Hannam, Mark
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (09)
  • [10] Modelling gravitational waves from precessing black-hole binaries: progress, challenges and prospects
    Mark Hannam
    [J]. General Relativity and Gravitation, 2014, 46