Preparation of wheat straw-supported Nanoscale Zero-Valent Iron and its removal performance on ciprofloxacin

被引:38
|
作者
Shao, Yingying [1 ]
Zhao, Pin [1 ]
Yue, Qinyan [1 ]
Wu, Yuwei [1 ]
Gao, Baoyu [1 ]
Kong, Wenjia [1 ]
机构
[1] Shandong Univ, Sch Environm Sci & Engn, Shandong Prov Key Lab Water Pollut Control & Reso, Jinan 250100, Peoples R China
关键词
Wheat straw; Nanoscale Zero-Valent Iron; Ciprofloxacin removal; Degradation products and mechanism; Degradation pathways; FLUOROQUINOLONE ANTIBACTERIAL AGENTS; TANDEM MASS-SPECTROMETRY; WASTE-WATER; AQUEOUS-SOLUTION; TRANSFORMATION PATHWAYS; DEGRADATION-PRODUCTS; CARBON NANOTUBES; ACTIVATED CARBON; CR(VI) REMOVAL; CHROMIUM VI;
D O I
10.1016/j.ecoenv.2018.04.020
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wheat straw-supported Nanoscale Zero-Valent Iron particles (WS-NZVI) were successfully synthesized, which were used for Ciprofloxacin hydrochloride (CIP) removal in simulation wastewater. The structure, chemical composition and micro-morphology of WS-NZVI and Nanoscale Zero-Valent Iron (NZVI) were characterized by scanning electron microscopy analysis (SEM), X-ray diffraction (XRD), as well as the Fourier Transformed IR spectra (FT-IR). XRD results proved the existence of Fe degrees, and SEM images indicated that the agglomeration of NZVI was effectively inhibited when loaded on wheat straw. Besides, the effects of initial solution pH, CIP concentration, adsorbents dosage and contacting time on the removal efficiency of CIP by WS-NZVI and NZVI were investigated. The experimental results showed that, compared with NZVI and wheat straw, WS-NZVI possessed higher removal efficiency for CIP, and the maximum removal capacity of CIP by WS-NZVI was 363.63 mg g(-1) (25 degrees C). Furthermore, WS-NZVI was suitable for wider pH range (pH = 4-10) in comparison with NZVI. For the WS-NZVI, the kinetic was better fitted with pseudo-second-order equation, rather than pseudo first-order equation. The Mass spectrometry (MS) analysis deduced that the degradation reaction mainly occurred on quinolone groups piperazinyl ring. Therefore, it is feasible that using wheat straw as a support material to enhance the performance of NZVI, and the synthesized WS-NZVI has a potential in the organic compounds elimination because of its redox reaction activity.
引用
收藏
页码:100 / 107
页数:8
相关论文
共 50 条
  • [1] Degradation of chlortetracycline with simultaneous removal of copper (II) from aqueous solution using wheat straw-supported nanoscale zero-valent iron
    Shao, Yingying
    Gao, Yue
    Yue, Qinyan
    Kong, Wenjia
    Gao, Baoyu
    Wang, Wengang
    Jiang, Wenqiang
    CHEMICAL ENGINEERING JOURNAL, 2020, 379
  • [2] Chromium removal using resin supported nanoscale zero-valent iron
    Fu, Fenglian
    Ma, Jun
    Xie, Liping
    Tang, Bing
    Han, Weijiang
    Lin, Suya
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2013, 128 : 822 - 827
  • [3] Role of Zeolite-Supported Nanoscale Zero-Valent Iron in Selenate Removal
    Phanthasri, Jakkapop
    Grisdanurak, Nurak
    Khamdahsag, Pummarin
    Wantala, Kitirote
    Khunphonoi, Rattabal
    Wannapaiboon, Suttipong
    Tanboonchuy, Visanu
    WATER AIR AND SOIL POLLUTION, 2020, 231 (05):
  • [4] Removal of bromate using nanoscale zero-valent iron supported on activated carbon
    Yang, Qi
    Wu, Xiu-Qiong
    Zhong, Yu
    Li, Xiao-Ming
    Deng, Xiao
    Li, Na
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2013, 40 (12): : 97 - 102
  • [5] Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate
    Zhang Huan
    Jin Zhao-Hui
    Han Lu
    Qin Cheng-hua
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2006, 16 (SUPPL.): : S345 - S349
  • [6] Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate
    张环
    金朝晖
    韩璐
    秦承华
    TransactionsofNonferrousMetalsSocietyofChina, 2006, (S1) : 345 - 349
  • [7] Nanoscale zero-valent iron supported on carbon nanotubes for polychlorinated biphenyls removal
    Cao, Xiuqin
    Wang, Haoran
    Yang, Chunmiao
    Cheng, Lin
    Fu, Kunming
    Qiu, Fuguo
    DESALINATION AND WATER TREATMENT, 2020, 201 : 173 - 186
  • [8] Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene
    Gaoling Wei
    Jinhua Zhang
    Jinqiu Luo
    Huajian Xue
    Deyin Huang
    Zhiyang Cheng
    Xinbai Jiang
    Frontiers of Environmental Science & Engineering, 2019, 13
  • [9] Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution
    Dong, Haoran
    Zhang, Cong
    Hou, Kunjie
    Cheng, Yujun
    Deng, Junmin
    Jiang, Zhao
    Tang, Lin
    Zeng, Guangming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 188 : 188 - 196
  • [10] Role of Zeolite-Supported Nanoscale Zero-Valent Iron in Selenate Removal
    Jakkapop Phanthasri
    Nurak Grisdanurak
    Pummarin Khamdahsag
    Kitirote Wantala
    Rattabal Khunphonoi
    Suttipong Wannapaiboon
    Visanu Tanboonchuy
    Water, Air, & Soil Pollution, 2020, 231