Lower semicontinuity property of multiparameter optimal stopping value and its application to multiparameter prophet inequalities

被引:2
|
作者
Tanaka, Teruo [1 ]
机构
[1] Hiroshima City Univ, Grad Sch Informat Sci, Dept Syst Engn, Asaminami Ku, Hiroshima, Japan
关键词
Stopping point; Multiparameter stochastic process; Convergence in distribution; Lower semicontinuity; Prophet inequality; EXPECTATIONS; SUPREMUM; RULE; SET;
D O I
10.1016/j.jmaa.2009.03.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the optimal stopping problem for discrete time multiparameter stochastic processes with the index set N-d. The optimal stopping value of a discrete time multiparameter integrable stochastic process whose negative part is uniformly integrable, is lower semicontinuous for the topology of convergence in distribution. The multiparameter version of prophet inequality for the one-parameter optimal stopping problem is formulated and the lower semicontinuity property of the optimal stopping value is applied to the multiparameter prophet inequality. (C) 2009 Published by Elsevier Inc.
引用
收藏
页码:240 / 251
页数:12
相关论文
共 50 条